2-Ethylhexanol inhibit Botrytis cinerea by interfering in sugar and amino acid metabolism

2-ethylhexanol-inhibit-botrytis-cinerea-by-interfering-in-sugar-and-amino-acid-metabolism
2-Ethylhexanol inhibit Botrytis cinerea by interfering in sugar and amino acid metabolism

Data Availability

The datasets used during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang, S., Griffiths, J., Marchand, G., Bernards, M. & Wang, A. Tomato brown rugose fruit virus: an emerging and rapidly spreading plant RNA virus that threatens tomato production wordwide. Mol. Plant Pathol. 23, 1262–1277 (2022a).

    Google Scholar 

  2. Ahmed, L., Martin-Diana, A., Rico, D. & Barry-Ryan, C. Effect of delactosed whey permeate treatment on physico-chemical, sensorial, nutritional and microbial properties of whole tomatoes during postharvest storage. LWT-Food Sci. Technol. 51, 367–374 (2013).

    Google Scholar 

  3. Lima, G. et al. Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: a mini review. Front. Nutr. 9, 868492 (2022).

    Google Scholar 

  4. Li, L. et al. Overexpression of Sly-miR167a delayed postharvest chilling injury of tomato fruit under low temperature storage. Postharvest Biol. Technol. 204, 112420 (2023).

    Google Scholar 

  5. Nakajima, M. & Akutsu, K. Virulence factors of Botrytis cinerea. J. Gen. Plant Pathol. 80, 15–23 (2014).

    Google Scholar 

  6. Wu, F. et al. 2-Phenylethanol biocontrol postharvest tomato gray mold and its effect on tomato quality. Sci. Hortic. 337, 113550 (2024).

    Google Scholar 

  7. Fagundes, C., Perez-Gago, M. B., Monteiro, A. R. & Palou, L. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int. J. Food Microbiol. 166, 391–398 (2013).

    Google Scholar 

  8. Chen, T. et al. Botrytis cinerea. Curr. Biol. 33, R460–R462 (2023).

    Google Scholar 

  9. Yang, J. et al. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pestic. Biochem. Physiol. 175, 104859 (2021).

    Google Scholar 

  10. Qian, J. et al. Improvement of antioxidant capacity and gray mold resistance of strawberries by plasma technology. Postharvest Biol. Technol. 223, 113426 (2025).

    Google Scholar 

  11. Xing, S. J. et al. Sulfur dioxide enhances the resistance of postharvest grape berries to gray mold through hydrogen peroxide signaling. Postharvest Biol. Technol. 221, 113325 (2025).

    Google Scholar 

  12. Chen, T. et al. Advances and strategies for controlling the quality and safety of postharvest fruit. Engineering 7, 1177–1184 (2021).

    Google Scholar 

  13. Zheng, L. et al. Pantoea jilinensis D25 promotes tomato growth and induces resistance to tomato gray mold (causative agent Botrytis cinerea). Physiol. Mol. Plant Pathol. 136, 102599 (2025).

    Google Scholar 

  14. McGinty, D. et al. Fragrance material review on 2-ethyl-1-hexanol. Food Chem. Toxicol. 48, 115–129 (2010).

    Google Scholar 

  15. Sun, C. et al. Conversion of lignocellulosic biomass-derived compounds to 2-ethylhexanol: a review. Environ. Chem. Lett. 22, 1093–1113 (2024).

    Google Scholar 

  16. Shi, J. et al. The effect of BVOCs produced by Lysinibacillus fusiformis and LED irradiation on pigment metabolism in stored broccoli. Food Chem. 420, 136068 (2023).

    Google Scholar 

  17. Zhang, Y. et al. Antifungal activity and mechanisms of 2-ethylhexanol, a volatile organic compound produced by Stenotrophomonas sp. NAU1697, against Fusarium oxysporum f. sp. Cucumerinum. J. Agric. Food Chem. 72, 15213–15227 (2024).

    Google Scholar 

  18. Zhang, K. et al. Inhibition effect of 2-ethylhexanol against Aspergillus flavus and aflatoxin B1 mainly by disrupting cell membrane and downregulating genes related to ergosterol synthesis and aflatoxins global regulator. Food Chem. 491, 145263 (2025).

    Google Scholar 

  19. Wang, M. et al. Integrated transcriptomic and metabolomic analysis of delayed leaf yellowing in postharvest pak choi (Brassica rapa subsp. chinensis) by 2-ethylhexanol (2-EH). Postharvest Biol. Technol. 222, 113403 (2025).

    Google Scholar 

  20. Bi, K., Liang, Y., Mengiste, T. & Sharon, A. Killing softly: a roadmap of Botrytis cinerea pathogenicity. Trends Plant Sci. 28, 211–222 (2023).

    Google Scholar 

  21. Liang, S. et al. 2-Methylbutyric acid functions as a potential antifungal fumigant by inhibiting Botrytis cinerea and inducing resistance to gray mold in cherry tomatoes. Postharvest Biol. Technol. 222, 113343 (2025).

    Google Scholar 

  22. Li, G. et al. Mushroom alcohol controls gray mold caused by Botrytis cinerea in harvested fruit via activating the genes involved in jasmonic acid signaling pathway. Postharvest Biol. Technol. 186, 111843 (2022).

    Google Scholar 

  23. Li, Y. et al. Transcriptomics revealed terpinen-4-ol mediated sucrose metabolism and delayed cell wall degradation to maintain blueberry quality. Postharvest Biol. Technol. 219, 113273 (2025).

    Google Scholar 

  24. Ling, L. et al. Antifungal activity and application of Neurospora sitophila Y-4 against postharvest Penicillium italicum of Citrus reticulata ‘Shiyue Ju’ via 3-penten-2-one. Food Biosci. 73, 107706 (2025).

    Google Scholar 

  25. Bapat, V. et al. Ripening of fleshy fruit, molecular insight and the role of ethylene. Biotechnol. Adv. 28, 94–107 (2010).

    Google Scholar 

  26. Chen, Y. et al. Inhibition efficiency of wood vinegar on grey mold of table grapes. Food Biosci. 38, 100755 (2020).

    Google Scholar 

  27. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).

    Google Scholar 

  28. Xu, Y., Luo, Z., Charles, M., Rolland, D. & Roussel, D. Pre-harvest UV-C irradiation triggers VOCs accumulation with alteration of antioxidant enzymes and phytohormones in strawberry leaves. J. Plant Physiol. 218, 265–274 (2017).

    Google Scholar 

  29. Zhai, S. et al. 3-Methyl-1-butanol inhibited gray mold of red grape by damaging cell membrane integrity and the antioxidant capacity of Botrytis cinerea under oxidative stress. LWT 231, 118328 (2025).

    Google Scholar 

  30. Xu, D. et al. Multi-target antifungal action of 1-octanol against Botrytis cinerea and its application in curdlan hydrogel for gray mold control. Postharvest Biol. Technol. 232, 114011 (2026).

    Google Scholar 

  31. Paul, K., Gupta, D., Ino, M., Sujon, M. & Ueno, M. 3-Methyl pentanoic acid suppress gray mold disease potentially targeting cell-wall integrity (CWI) and mitogen-activated protein kinase (MAPK) pathways in Botrytis cinerea. BMC Microbiol 25, 470 (2025).

    Google Scholar 

  32. Li, G. et al. 2,3-Butanedione suppresses gray mold of postharvest fruit by activating autophagy of Botrytis cinerea. Postharvest Biol. Technol. 193, 112057 (2022).

    Google Scholar 

  33. Song, G. et al. Antifungal mechanism of (E)-2-hexenal against Botrytis cinerea growth revealed by transcriptome analysis. Front. Microbiol. 13, 951751 (2022).

    Google Scholar 

  34. Sakr, S. Sugar transport, metabolism and signaling in plants. Int. J. Mol. Sci. 24, 5655 (2023).

    Google Scholar 

  35. Tadege, M. et al. Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant J. 16, 661–671 (1998).

    Google Scholar 

  36. Feng, F., Li, M., Ma, F. & Cheng, L. Effects of location within the tree canopy on carbohydrates, organic acids, amino acids and phenolic compounds in the fruit peeland flesh from three apple (Malus×domestica) cultivars. Hortic. Res. 1, 14019 (2014).

    Google Scholar 

  37. Alamri, S. et al. Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L. Environ. Exp. Bot. 161, 290–302 (2019).

    Google Scholar 

  38. Huang, S. et al. Melatonin regulates proline metabolism by modulating CmDREB1A/E to enhance cold tolerance in cantaloupe fruit. Plant Physiol. Biochem. 225, 110027 (2025).

    Google Scholar 

  39. Wei, L. et al. Alterations in glucose metabolism and shikimate pathway affected by transient overexpression of CsPAL gene in postharvest citrus fruit. Postharvest Biol. Technol. 213, 112936 (2024).

    Google Scholar 

  40. Jiang, X., Chang, H. & Zhou, Y. Expression, purification and preliminary crystallographic studies of human glutamate oxaloacetate transaminase 1 (GOT1). Protein Expr. Purif. 113, 102–106 (2015).

    Google Scholar 

  41. Yun, J. et al. Volatile organic compounds produced by Bacillus siamensis inhibit postharvest grey mold in cherry tomato by altering metabolic pathways and the pathogenicity of Botrytis cinerea. Postharvest Biol. Technol. 226, 113543 (2025).

    Google Scholar 

  42. Itkor, P. et al. Active bio-foam packaging based on sodium alginate incorporated with vanillin for extending the shelf life of cherry tomatoes. Int. J. Biol. Macromol. 306, 141610 (2025).

    Google Scholar 

  43. Duan, W. et al. Alleviation of postharvest rib-edge darkening and chilling injury of carambola fruit by brassinolide under low temperature storage. Sci. Hortic. 299, 111015 (2022).

    Google Scholar 

  44. Duan, W. et al. Silencing Sly-miR159 accelerated preharvest ripening and delayed postharvest senescence of tomato fruit. Postharvest Biol. Technol. 219, 113243 (2025).

    Google Scholar 

  45. Zhang, Z. et al. Sodium pyrosulfite inhibits the pathogenicity of Botrytis cinerea by interfering with antioxidant system and sulfur metabolism pathway. Postharvest Biol. Technol. 189, 111936 (2022b).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Special innovation ability construction fund of Beijing Academy of Agricultural and Forestry Sciences (KJCX20251006), Special innovation ability construction fund of Beijing Academy of Agricultural and Forestry Sciences (KJCX20240508), China Agriculture Research System of MOF and MARA (CARS-23), the National Natural Science Foundation of China (32472798, 32302614), Collaborative Innovation Program of the Beijing Vegetable Research Center (XTCX202302, XTCX202301), Special innovation ability construction fund of Beijing Academy of Agricultural and Forestry Sciences (KJCX20240334, KJCX20251102).

Author information

Author notes

  1. These authors contributed equally: Zipeng Wang, Wenhui Duan, Bin Duan.

Authors and Affiliations

  1. Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China

    Zipeng Wang, Wenhui Duan, Haiwei He, Jiang Nan, Xin Yan, Shusheng Lei, Yuqi Bin, Chaojin Chen, Xiaozhen Yue, Shuzhi Yuan, Jinhua Zuo, Xiaodi Xu & Qing Wang

  2. Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, College of Smart Agriculture/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China

    Zipeng Wang, Bin Duan, Jiang Nan, Shusheng Lei & Jia Liu

  3. Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China

    Wenhui Duan & Xiangbin Xu

  4. College of Agriculture, Guangxi University, Nanning, China

    Haiwei He & Xin Yan

Authors

  1. Zipeng Wang
  2. Wenhui Duan
  3. Bin Duan
  4. Haiwei He
  5. Jiang Nan
  6. Xin Yan
  7. Shusheng Lei
  8. Yuqi Bin
  9. Chaojin Chen
  10. Xiaozhen Yue
  11. Xiangbin Xu
  12. Shuzhi Yuan
  13. Jinhua Zuo
  14. Jia Liu
  15. Xiaodi Xu
  16. Qing Wang

Contributions

Writing – review & editing, Writing – original draft, Data curation, Conceptualization: W.Z. Original draft, Methodology, Investigation, Data curation: D.W. Methodology, Investigation, Data curation: D.B. Software, Data curation: H.W. Software, Methodology: N.J. Visualization, Data curation: Y.X. Resources, Formal analysis, Conceptualization: L.S. Formal analysis, Data curation: B.Y. Formal analysis, Data curation: C.C. Investigation, Formal analysis: Y.X. Resources, Methodology: X.X. Formal analysis, Conceptualization: Y.S. Resources, Data curation: Z.J. Writing – review & editing Resources, Formal analysis: L.J. Supervision, Resources, Methodology, Formal analysis: X.X. Writing – review & editing, Validation, Supervision, Project administration, Funding acquisition, Conceptualization: W.Q.

Corresponding authors

Correspondence to Jia Liu, Xiaodi Xu or Qing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Duan, W., Duan, B. et al. 2-Ethylhexanol inhibit Botrytis cinerea by interfering in sugar and amino acid metabolism. npj Sci Food (2026). https://doi.org/10.1038/s41538-026-00753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41538-026-00753-3