Bioengineering structural anisotropy in living tissues

bioengineering-structural-anisotropy-in-living-tissues
Bioengineering structural anisotropy in living tissues

References

  1. Liesche, J., Ziomkiewicz, I. & Schulz, A. Super-resolution imaging with pontamine fast scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant. Biol. 13, 226 (2013).

    Google Scholar 

  2. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Google Scholar 

  3. Rozario, T. & DeSimone, D. W. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 341, 126–140 (2010).

    Google Scholar 

  4. Hoffmann, G. A., Wong, J. Y. & Smith, M. L. On force and form: mechano-biochemical regulation of extracellular matrix. Biochemistry 58, 4710–4720 (2019).

    Google Scholar 

  5. Scarr, G. Fascial hierarchies and the relevance of crossed-helical arrangements of collagen to changes in the shape of muscles. J. Bodyw. Mov. Ther. 20, 377–387 (2016).

    Google Scholar 

  6. Anderson, R. H., Niederer, P. F., Sanchez‐Quintana, D., Stephenson, R. S. & Agger, P. How are the cardiomyocytes aggregated together within the walls of the left ventricular cone? J. Anat. 235, 697–705 (2019).

    Google Scholar 

  7. Bontempi, M. et al. Understanding the structure-function relationship through 3D imaging and biomechanical analysis: a novel methodological approach applied to anterior cruciate ligaments. Biomimetics 9, 477 (2024).

    Google Scholar 

  8. Franchi, M., Trirè, A., Quaranta, M., Orsini, E. & Ottani, V. Collagen structure of tendon relates to function. Sci. World 7, 404–420 (2007).

    Google Scholar 

  9. Hooks, D. A. et al. Laminar arrangement of ventricular myocytes influences electrical behavior of the heart. Circ. Res. 101, 103–112 (2007).

    Google Scholar 

  10. Holmes, D. F. et al. Corneal collagen fibril structure in three dimensions: structural insights into fibril assembly, mechanical properties, and tissue organization. Proc. Natl Acad. Sci. USA. 98, 7307–7312 (2001).

    Google Scholar 

  11. Feinberg, A. W. et al. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials 33, 5732–5741 (2012).

    Google Scholar 

  12. Zhang, L. & Szeri, A. Z. Transport of neutral solute in articular cartilage: effect of microstructure anisotropy. J. Biomech. 41, 430–437 (2008).

    Google Scholar 

  13. Kim, K. et al. Dynamic hierarchical ligand anisotropy for competing macrophage regulation in vivo. Bioact. Mater. 47, 121–135 (2025).

    Google Scholar 

  14. Bril, M. et al. Shape-morphing photoresponsive hydrogels reveal dynamic topographical conditioning of fibroblasts. Adv. Sci. 10, 2303136 (2023).

    Google Scholar 

  15. Ghonim, S. et al. Myocardial architecture, mechanics, and fibrosis in congenital heart disease. Front. Cardiovasc. Med. 4, 258682 (2017).

    Google Scholar 

  16. Santodomingo-Rubido, J. et al. Keratoconus: an updated review. Contact Lens Anterior Eye 45, 101559 (2022).

    Google Scholar 

  17. Brazile, B. L. et al. Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. J. Mech. Behav. Biomed. Mater. 116, 1–23 (2021).

    Google Scholar 

  18. Liew, L. C., Ho, B. X. & Soh, B. S. Mending a broken heart: current strategies and limitations of cell-based therapy. Stem Cell Res. Ther. 11, 138 (2020).

    Google Scholar 

  19. Tompkins, B. A., Natsumeda, M., Balkan, W. & Hare, J. M. What is the future of cell-based therapy for acute myocardial infarction. Circ. Res. 120, 252–255 (2017).

    Google Scholar 

  20. van den Boom, N. A. C., Winters, M., Haisma, H. J. & Moen, M. H. Efficacy of stem cell therapy for tendon disorders: a systematic review. Orthop. J. Sports Med. 8, 4 (2020).

    Google Scholar 

  21. Wissing, T. B. et al. Biomaterial-driven in situ cardiovascular tissue engineering — a multi-disciplinary perspective. NJP Regen. Med. 2, 18 (2017).

    Google Scholar 

  22. Hwang, D. G., Choi, Y. M. & Jang, J. 3D bioprinting-based vascularized tissue models mimicking tissue-specific architecture and pathophysiology for in vitro studies. Front. Bioeng. Biotechnol. 9, 685507 (2021).

    Google Scholar 

  23. Uiterwijk, M. et al. In situ remodeling overrules bioinspired scaffold architecture of supramolecular elastomeric tissue-engineered heart valves. JACC Basic Transl. Sci. 5, 1187 (2020).

    Google Scholar 

  24. Mercer, S. E. et al. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 7, e52375 (2012).

    Google Scholar 

  25. Torrent-Guasp, F. et al. Towards new understanding of the heart structure and function. Eur. J. Cardiothorac. Surg. 27, 191–201 (2005).

    Google Scholar 

  26. Takebayashi-Suzuki, K. & Suzuki, A. Intracellular communication among morphogen signaling pathways during vertebrate body plan formation. Genes 24, 341 (2020).

    Google Scholar 

  27. Kim, S., Uroz, M., Bays, J. L. & Chen, C. S. Harnessing mechanobiology for tissue engineering. Dev. Cell. 56, 180–191 (2021).

    Google Scholar 

  28. Kahane, N. & Kalcheim, C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 147, dev183996 (2020).

    Google Scholar 

  29. Lui, L. et al. Nodel is a short-range morphogen with activity that spreads through a relay mechanism in human gastruloids. Nat. Commun. 13, 497 (2022).

    Google Scholar 

  30. Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 96–99 (2002).

    Google Scholar 

  31. Gros, J., Feistel, K., Viebahn, C., Blum, M. & Tabin, C. J. Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324, 941–944 (2009).

    Google Scholar 

  32. Strutt, D., Madder, D., Chaudhary, V. & Artymiuk, P. J. Structure-function dissection of the frizzled receptor in Drosophila melanogaster suggests different mechanisms of action in planar polarity and canonical wnt signaling. Genetics 192, 1295–1313 (2012).

    Google Scholar 

  33. Vetter, R. & Iber, D. Precision of morphogen gradients in neural tube development. Nat. Commun. 13, 1145 (2022).

    Google Scholar 

  34. Adelmann, J. A., Vetter, R. & Iber, D. Patterning precision under non-linear morphogen decay and molecular noise. eLife 12, e84757 (2023).

    Google Scholar 

  35. Dickmann, J. E. M., Rink, J. C. & Jülicher, F. Long-range morphogen gradient formation by cell-to-cell signal propagation. Phys. Biol. 7, 19 (2022).

    Google Scholar 

  36. Ho, R. D. J. G. et al. Dynamics of morphogen source formation in a growing tissue. PLoS Comput. Biol. 14, e1012508 (2024).

    Google Scholar 

  37. Mosby, L. S., Bowen, A. E. & Hadjivasiliou, Z. Morphogens in the evolution of size, shape and patterning. Development 15, dev202412 (2024).

    Google Scholar 

  38. Travascio, F., Devaux, F., Volz, M. & Jackson, A. R. Molecular and macromolecular diffusion in human meniscus: relationships with tissue structure and composition. Osteoarthr. Cartil. 28, 375–382 (2020).

    Google Scholar 

  39. Kenny, F. N. et al. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol. 123, 1–16 (2023).

    Google Scholar 

  40. Canse, C., Yildirim, E. & Yaba, A. Overview of junctional complexes during mammalian early embryonic development. Front. Endocrinol. 14, 1150017 (2023).

    Google Scholar 

  41. Sánchez-Iranzo, H., Halavatyi, A. & Diz-Muñoz, A. Strength of interactions in the notch gene regulatory network determines patterning and fate in the notochord. eLife 6, e75429 (2022).

    Google Scholar 

  42. Bocci, F., Onuchic, J. N. & Jolly, M. K. Understanding the principles of pattern formation driven by notch signaling by integrating experiments and theoretical models. Front. Physiol. 31, 929 (2020).

    Google Scholar 

  43. Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).

    Google Scholar 

  44. Duclos, G., Garcia, S., Yevick, H. G. & Silberzan, P. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter. 14, 2346–2353 (2014).

    Google Scholar 

  45. Luo, Y. et al. Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers. J. R. Soc. Interface. 20, 20230160 (2023).

    Google Scholar 

  46. Park, D. et al. Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020).

    Google Scholar 

  47. Alert, R. & Trepat, X. Living cells on the move. Phys. Today 74, 30–36 (2021).

    Google Scholar 

  48. Kim, J. et al. Stress-induced plasticity of dynamic collagen networks. Nat. Commun. 8, 842 (2017).

    Google Scholar 

  49. Leivo, I., Vaheri, A., Timpl, R. & Wartiovaara, J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev. Biol. 76, 100–114 (1980).

    Google Scholar 

  50. Legerstee, K., Geverts, B., Slotman, J. A. & Houtsmuller, A. B. Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Sci. Rep. 9, 10460 (2019).

    Google Scholar 

  51. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410 (2017).

    Google Scholar 

  52. Wu, X., Cesarovic, N., Falk, V., Mazza, E. & Giampietro, C. Mechanical factors influence β-catenin localization and barrier properties. Integr. Biol. 16, zyae013 (2024).

    Google Scholar 

  53. Tan, H. & Tan, S. The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation. J. Biol. Chem. 295, 5928–5943 (2020).

    Google Scholar 

  54. Shang, N. et al. Focal adhesion kinase and β-catenin cooperate to induce hepatocellular carcinoma. Hepatology. 70, 1631–1645 (2019).

    Google Scholar 

  55. Fisher, R. S. et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates. Proc. Natl Acad. Sci. USA. 118, e2021135118 (2021).

    Google Scholar 

  56. Buskermolen, A. B. C. et al. Cellular contact guidance emerges from gap avoidance. Cell Rep. Phys. Sci. 1, 100055 (2020).

    Google Scholar 

  57. Ray, A. et al. Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nat. Commun. 8, 14923 (2017).

    Google Scholar 

  58. Böhringer, D. et al. Dynamic traction force measurements of migrating immune cells in 3D biopolymer matrices. Nat. Phys. 20, 1816–1823 (2024).

    Google Scholar 

  59. Jones, D. L. et al. Mechanoepigenetic regulation of extracellular matrix homeostasis via Yap and Taz. Proc. Natl Acad. Sci. USA. 30, e2211947120 (2023).

    Google Scholar 

  60. Karamanos, N. K. et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 228, 6850–6912 (2021).

    Google Scholar 

  61. Wartiovaara, J., Leivo, I. & Vaheri, A. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev. Biol. 69, 247–257 (1979).

    Google Scholar 

  62. Gelse, K., Pöschl, E. & Aigner, T. Collagens — structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546 (2003).

    Google Scholar 

  63. Guo, X. et al. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Invest. Ophthalmol. Vis. Sci. 48, 4050–4060 (2007).

    Google Scholar 

  64. Hasenzahl, M., Müsken, M., Mertsch, S., Schrader, S. & Reichl, S. Cell sheet technology: influence of culture conditions on in vitro‐cultivated corneal stromal tissue for regenerative therapies of the ocular surface. J. Biomed. Mater. Res. B Appl. Biomater. 109, 1488–1504 (2021).

    Google Scholar 

  65. Leclech, C. & Villard, C. Cellular and subcellular contact guidance on microfabricated substrates. Front. Bioeng. Biotechnol. 8, 1198 (2020).

    Google Scholar 

  66. Niu, Y. et al. Compressive stress improves mechanical properties of mineralized collagen by dynamically regulating its mineralization — a closed-loop regulation mechanism. Mater. Des. 239, 112830 (2024).

    Google Scholar 

  67. Hammerman, M., Pierantoni, M., Isaksson, H. & Eliasson, P. Deprivation of loading during rat achilles tendon healing affects extracellular matrix composition and structure, and reduces cell density and alignment. Sci. Rep. 14, 23380 (2024).

    Google Scholar 

  68. Potekaev, N. N. et al. The role of extracellular matrix in skin wound healing. J. Clin. Med. 10, 5947 (2021).

    Google Scholar 

  69. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Google Scholar 

  70. Chow, M., Turcotte, R., Lin, C. P. & Zhang, Y. Arterial extracellular matrix: a mechanobiological study of the contributions of interactions of elastin and collagen. Biophys. J. 106, 2684–2692 (2014).

    Google Scholar 

  71. Cabral-Pacheco, G. A. et al. The roles of matrix metalloproteinases and their inhibitors in human disease. Int. J. Mol. Sci. 21, 9739 (2020).

    Google Scholar 

  72. Wang, W. Y., Davidson, C. D., Lin, D. & Baker, B. M. Actomyosin contractility-dependent matrix stretch and recoil induces rapid cell migration. Nat. Commun. 10, 1186 (2019).

    Google Scholar 

  73. De Jonge, N., Kanters, F. M. W., Baaijens, F. P. T. & Bouten, C. V. C. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs. Ann. Biomed. Eng. 41, 763–774 (2013).

    Google Scholar 

  74. Yeganegi, A., Whitehead, K., de Castro Brás, L. E. & Richardson, W. J. Mechanical strain modulates extracellular matrix degradation and byproducts in an isoform-specific manner. Biochim. Biophys. Acta Gen. Subj. 1867, 130286 (2022).

    Google Scholar 

  75. Humphrey, J. D. & Schwartz, M. A. Vascular mechanobiology: homeostasis, adaptation, and disease. Annu. Rev. Biomed. Eng. 13, 1–27 (2021).

    Google Scholar 

  76. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    Google Scholar 

  77. Contessotto, P. et al. Reproducing extracellular matrix adverse remodelling of non-ST myocardial infarction in a large animal model. Nat. Commun. 127, 995 (2023).

    Google Scholar 

  78. Zhou, Z. et al. Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis. J. Cancer. 8, 1466–1476 (2017).

    Google Scholar 

  79. Paidi, S. K. et al. Label-free Raman spectroscopy detects stromal adaptations in premetastatic lungs primed by breast cancer. Cancer Res. 77, 247–256 (2017).

    Google Scholar 

  80. Mierke, C. T. Extracellular matrix cues regulate mechanosensing and mechanotransduction of cancer cells. Cells 2, 96 (2024).

    Google Scholar 

  81. Hsu, K. S. et al. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat. Commun. 13, 7078 (2022).

    Google Scholar 

  82. Yuan, Z. et al. Extracellular matrix remodeling in tumor progression and immune escape: from mechanics to treatments. Mol. Cancer. 22, 48 (2023).

    Google Scholar 

  83. Thorseth, M.-L. et al. Uncovering mediators of collagen degradation in the tumor microenvironment. Matrix Biol. Plus 13, 100101 (2022).

    Google Scholar 

  84. Ermis, M., Antmen, E. & Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact. Mater. 3, 355–369 (2018).

    Google Scholar 

  85. Pramotton, F. M. et al. Accelerated epithelial layer healing induced by tactile anisotropy in surface topography. Sci. Adv. 9, eadd1581 (2023).

    Google Scholar 

  86. Strale, P. O. et al. Multiprotein printing by light-induced molecular adsorption. Adv. Mater. 28, 2024–2029 (2016).

    Google Scholar 

  87. Perl, A., Reinhoudt, D. N. & Huskens, J. Microcontact printing: limitations and achievements. Adv. Mater. 21, 2257–2268 (2009).

    Google Scholar 

  88. Liu, C. et al. Sustained biochemical signaling and contact guidance by electrospun bicomponents as promising scaffolds for nerve tissue regeneration. ACS Omega 6, 33010–33017 (2021).

    Google Scholar 

  89. Flores-Rojas, G. G. et al. Electrospun scaffolds for tissue engineering: a review. Macromol 3, 524–553 (2023).

    Google Scholar 

  90. Teixeira, A. I., Abrams, G. A., Bertics, P. J., Murphy, C. J. & Nealey, P. F. Epithelial contact guidance of well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003).

    Google Scholar 

  91. Hamilton, D. W., Oates, C. J., Hasanzadeh, A. & Mittler, S. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance. PLoS One 5, e15129 (2010).

    Google Scholar 

  92. Kim, D. H. et al. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30, 5433–5444 (2009).

    Google Scholar 

  93. Linke, P. et al. Dynamic contact guidance of myoblasts by feature size and reversible switching of substrate topography: orchestration of cell shape, orientation, and nematic ordering of actin cytoskeletons. Langmuir 35, 7538–7551 (2019).

    Google Scholar 

  94. Sun, Q., Qiu, T., Liu, X. & Wei, Q. Cellular spatial sensing determines cell mechanotransduction activity on the aligned nanofibers. Small 21, e2410351 (2025).

    Google Scholar 

  95. Serbo, J. V. et al. Patterning of fibroblast and matrix anisotropy within 3D confinement is driven by the cytoskeleton. Adv. Healthc. Mater. 5, 146–158 (2015).

    Google Scholar 

  96. Ilina, O. et al. Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion. Nat. Cell Biol. 22, 1103–1115 (2020).

    Google Scholar 

  97. Yamada, K. M., Doyle, A. D. & Lu, J. Cell-3D matrix interactions: recent advances and opportunities. Trends Cell Biol. 32, 883–895 (2022).

    Google Scholar 

  98. van der Putten, C. et al. Dimensionality matters: exploiting UV-photopatterned 2D and two-photon-printed 2.5D contact guidance cues to control corneal fibroblast behavior and collagen deposition. Bioengineering 11, 402 (2024).

    Google Scholar 

  99. Bian, W., Jackman, C. P. & Bursac, N. Controlling the structural and functional anisotropy of engineered cardiac tissues. Biofabrication 6, 024109 (2015).

    Google Scholar 

  100. Jia, X. et al. A multifunctional anisotropic patch manufactured by microfluidic manipulation for the repair of infarcted myocardium. Adv. Mater. 36, 2404071 (2024).

    Google Scholar 

  101. Werner, M., Petersen, A., Kurniawan, N. A. & Bouten, C. V. C. Cell‐perceived substrate curvature dynamically coordinates the direction, speed, and persistence of stromal cell migration. Adv. Biosyst. 3, 1900080 (2019).

    Google Scholar 

  102. Connon, C. J. & Gouveia, R. M. Milliscale substrate curvature promotes myoblast self‐organization and differentiation. Adv. Biol. 5, 2000280 (2021).

    Google Scholar 

  103. Schamberger, B. et al. Curvature in biological systems: its quantification, emergence, and implications across the scales. Adv. Mater. 35, e2206110 (2023).

    Google Scholar 

  104. Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E. & Zadpoor, A. A. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232, 119739 (2020).

    Google Scholar 

  105. Baptista, D., Teixeira, L., van Blitterswijk, C., Giselbrecht, S. & Truckenmüller, R. Overlooked? Underestimated? Effects of substrate curvature on cell behavior. Trends Biotechnol. 37, 838–854 (2019).

    Google Scholar 

  106. Werner, M. et al. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 4, 1600347 (2017).

    Google Scholar 

  107. Werner, M., Kurniawan, N. A. & Bouten, C. V. C. Cellular geometry sensing at different length scales and its implications for scaffold design. Materials 13, 963 (2020).

    Google Scholar 

  108. Werner, M., Kurniawan, N. A., Korus, G., Bouten, C. V. C. & Petersen, A. Mesoscale substrate curvature overrules nanoscale contact guidance to direct bone marrow stromal cell migration. J. R. Soc. Interface. 15, 20180162 (2018).

    Google Scholar 

  109. Fioretta, E. S., Simonet, M., Smits, A. I. P. M., Baaijens, F. P. T. & Bouten, C. V. C. Differential response of endothelial and endothelial colony forming cells on electrospun scaffolds with distinct microfiber diameters. Biomacromolecules 15, 821–829 (2014).

    Google Scholar 

  110. Liu, C. et al. Collective cell polarization and alignment of curved surfaces. J. Mech. Behav. Biomed. Mater. 88, 330–339 (2018).

    Google Scholar 

  111. Gouveia, R. M., Koudouna, E., Jester, J., Figueiredo, F. & Connon, C. J. Template curvature influences cell alignment to create improved human corneal tissue equivalents. Adv. Biosyst. 1, 1700135 (2017).

    Google Scholar 

  112. Wohlgemuth, R. P. et al. Strain-dependent dynamic re-alignment of collagen fibers in skeletal muscle extracellular matrix. Acta Biomaterialia 187, 227–241 (2024).

    Google Scholar 

  113. Ristori, T. et al. Modelling the combined effects of collagen and cyclic strain on cellular orientation in collagenous tissues. Sci. Rep. 8, 8518 (2018).

    Google Scholar 

  114. Kaunas, R., Nguyen, P., Usami, S. & Chien, S. Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc. Natl Acad. Sci. USA 102, 15895–15900 (2005).

    Google Scholar 

  115. Tamiello, C. et al. Cellular strain avoidance is mediated by a functional actin cap — observations in an Lmna-deficient cell model. J. Cell Sci. 130, 779–790 (2017).

    Google Scholar 

  116. Nava, M. M. et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800–817.e22 (2020).

    Google Scholar 

  117. Tamiello, C., Bouten, C. V. C. & Baaijens, F. P. T. Competition between cap and basal actin fiber orientation in cells subjected to contact guidance and cyclic strain. Sci. Rep. 5, 8752 (2015).

    Google Scholar 

  118. Wang, J. H. C. & Grood, E. S. The strain magnitude and contact guidance determine orientation response of fibroblasts to cyclic substrate strains. Connect. Tissue Res. 41, 29–36 (2000).

    Google Scholar 

  119. Tondon, A. & Kaunas, R. The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS One 9, 89592 (2014).

    Google Scholar 

  120. Chen, K. et al. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl Acad. Sci. USA 115, 986–991 (2018).

    Google Scholar 

  121. Gaul, R. T. et al. Pressure-induced collagen degradation in arterial tissue as a potential mechanism for degenerative arterial disease progression. J. Mech. Behav. Biomed. Mater. 109, 103771 (2020).

    Google Scholar 

  122. Pei, D. et al. Remodeling of aligned fibrous extracellular matrix by encapsulated cells under mechanical stretching. Acta Biomater. 112, 202–212 (2020).

    Google Scholar 

  123. Ingber, D. E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    Google Scholar 

  124. Foolen, J., Deshpande, V. S., Kanters, F. M. W. & Baaijens, F. P. T. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33, 7508–7518 (2012).

    Google Scholar 

  125. Mostert, D. et al. Human pluripotent stem cell-derived cardiomyocytes align under cyclic strain when guided by cardiac fibroblasts. APL Bioeng. 6, 046108 (2022).

    Google Scholar 

  126. Van Haaften, E. E. et al. Decoupling the effect of shear stress and stretch on tissue growth and remodeling in a vascular graft. Tissue Eng. Part C Methods 24, 418–429 (2018).

    Google Scholar 

  127. Ando, J. & Yamamoto, K. Vascular mechanobiology endothelial cell responses to fluid shear stress. Circ. J. 73, 1983–1992 (2009).

    Google Scholar 

  128. Levesque, M. J. & Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107, 341–347 (1985).

    Google Scholar 

  129. Egorova, A. D. et al. Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition. Circ. Res. 108, 1093–1101 (2011).

    Google Scholar 

  130. Jones, T. J. et al. Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J. Cell Physiol. 227, 70–76 (2012).

    Google Scholar 

  131. van der Meer, A. D., Poot, A. A., Feijen, J. & Vermes, I. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay. Biomicrofluidics 4, 11103 (2010).

    Google Scholar 

  132. Vion, A. C. et al. Endothelial cell orientation and polarity are controlled by shear stress and VEGF through distinct signaling pathways. Front. Physiol. 11, 1743 (2021).

    Google Scholar 

  133. Nerger, B. A., Brun, P. T. & Nelson, C. M. Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Sci. Adv. 6, eaaz7748 (2020).

    Google Scholar 

  134. Kim, S. et al. Recent technological advances in lab-on-a-chip for bone remodeling. Biosens. Bioelectron. X 14, 100360 (2023).

    Google Scholar 

  135. Nerger, B. A., Brun, P. T. & Nelson, C. M. Microextrusion printing cell-laden networks of type i collagen with patterned fiber alignment and geometry. Soft Matter 15, 5728–5738 (2019).

    Google Scholar 

  136. Muncie, J. M. & Weaver, V. M. The physical and biochemical properties of the extracellular matrix regulate cell fate. Curr. Top. Dev. Biol. 130, 1–37 (2018).

    Google Scholar 

  137. Yue, B. Biology of the extracellular matrix: an overview. J. Glaucoma 23, S20–S23 (2014).

    Google Scholar 

  138. Wang, Y., Wang, X., Wohland, T. & Sampath, K. Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife 5, e13879 (2016).

    Google Scholar 

  139. Lin, B. & Levchenko, A. Spatial manipulation with microfluidics. Front. Bioeng. Biotechnol. 3, 39 (2015).

    Google Scholar 

  140. Mathieu, M., Isomursu, A. & Ivaska, J. Positive and negative durotaxis — mechanisms and emerging concepts. J. Cell Sci. 137, jcs261919 (2024).

    Google Scholar 

  141. McGuigan, A. P. & Javaherian, S. Tissue patterning: translating design principles from in vivo to in vitro. Annu. Rev. Biomed. Eng. 18, 1–24 (2016).

    Google Scholar 

  142. Zhao, F. et al. Fibroblast alignment and matrix remodeling induced by a stiffness gradient in a skin-derived extracellular matrix hydrogel. Acta Biomater. 1, 67–80 (2024).

    Google Scholar 

  143. van der Putten, C. et al. Protein micropatterning in 2.5D: an approach to investigate cellular responses in multi-cue environments. ACS Appl. Mater. Interfaces 13, 25589–25598 (2021).

    Google Scholar 

  144. Vartanian, K. B., Kirkpatrick, S. J., Hanson, S. R. & Hinds, M. T. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem. Biophys. Res. Commun. 371, 787–792 (2008).

    Google Scholar 

  145. Ristori, T., Vigliotti, A., Baaijens, F. P. T., Loerakker, S. & Deshpande, V. S. Prediction of cell alignment on cyclically strained grooved substrates. Biophys. J. 111, 2274–2285 (2016).

    Google Scholar 

  146. Bliley, J. M. et al. Dynamic loading of human engineered heart tissue enhances contractile function and drives a desmosome-linked disease phenotype. Sci. Transl. Med. 13, eabd1817 (2021).

    Google Scholar 

  147. Dede Eren, A. et al. The loop of phenotype: dynamic reciprocity links tenocyte morphology to tendon tissue homeostasis. Acta Biomater. 163, 275–286 (2023).

    Google Scholar 

  148. Jing, J. et al. Reciprocal interaction between mesenchymal stem cells and transit amplifying cells regulates tissue homeostasis. eLife 10, e59459 (2021).

    Google Scholar 

  149. Bril, M., Fredrich, S. & Kurniawan, N. A. Stimuli-responsive materials: a smart way to study dynamic cell responses. Smart Mater. Med. 3, 257–273 (2022).

    Google Scholar 

  150. Madl, C. M. et al. Hydrogel biomaterials that stiffen and soften on demand reveal that skeletal muscle stem cells harbor a mechanical memory. Proc. Natl Acad. Sci. USA. 121, e2406787121 (2024).

    Google Scholar 

  151. Rosales, A. M. et al. Hydrogels with reversible mechanics to probe dynamic cell microenvironments. Angew. Chem. 129, 12300–12304 (2017).

    Google Scholar 

  152. Scott, S. et al. Dynamic and reversible tuning of hydrogel viscoelasticity by transient polymer interactions for controlling cell adhesion. Adv. Mater. 37, 2408616 (2025).

    Google Scholar 

  153. Li, T. et al. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Acta Biomater. 156, 21–36 (2023).

    Google Scholar 

  154. Wang, Z. et al. Functional regeneration of tendons using scaffolds with physical anisotropy engineered via microarchitectural manipulation. Sci. Adv. 4, 10 (2018).

    Google Scholar 

  155. Yao, S. et al. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth. Nanoscale 8, 10252–10265 (2016).

    Google Scholar 

  156. Han, J., Wu, Q., Xia, Y., Wagner, M. B. & Xu, C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res. 16, 740–750 (2016).

    Google Scholar 

  157. Fomovsky, G. M. et al. Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail. 5, 515–522 (2012).

    Google Scholar 

  158. Clarke, S. A. et al. Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. J. Cardiovasc. Transl. Res. 8, 353–361 (2015).

    Google Scholar 

  159. Mondrinos, M. J. et al. Surface-directed engineering of tissue anisotropy in microphysiological models of musculoskeletal tissue. Sci. Adv. 7, eabe9446 (2021).

    Google Scholar 

  160. Xu, F. et al. Architecture design and advanced manufacturing of heart-on-a-chip: scaffolds, stimulation and sensors. Microsyst. Nanoeng. 10, 96 (2024).

    Google Scholar 

  161. Herrera-Perez, R. M. et al. Tissue flows are tuned by actomyosin-dependent mechanics in developing embryos. PRX Life 1, 013004 (2023).

    Google Scholar 

  162. Chandrasekar, S., Beach, J. R. & Oakes, P. W. Shining a light on RhoA: optical control of cell contractility. Int. J. Biochem. Cell Biol. 161, 106442 (2023).

    Google Scholar 

  163. Shoyer, T. C. et al. Coupling during collective cell migration is controlled by a vinculin mechanochemical switch. Proc. Natl Acad. Sci. USA. 120, e2316456120 (2023).

    Google Scholar 

  164. Mauretti, A. et al. Cardiomyocyte progenitor cell mechanoresponse unrevealed: strain avoidance and mechanosome development. Integr. Biol. 8, 991–1001 (2016).

    Google Scholar 

  165. Carton, F. et al. Cardiac differentiation promotes focal adhesions assembly through vinculin recruitment. Int. J. Mol. Sci. 24, 2444 (2023).

    Google Scholar 

  166. Mittal, N. et al. Myosin-independent stiffness sensing by fibroblasts is regulated by the viscoelasticity of flowing actin. Commun. Mater. 5, 6 (2024).

    Google Scholar 

  167. Meinert, C. et al. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineering human cartilage. Sci. Rep. 7, 16997 (2017).

    Google Scholar 

  168. Rama, E. et al. In vitro and in vivo evaluation of biohybrid tissue-engineered vascular grafts with transformative 1H/19F MRI traceable scaffolds. Biomaterials 311, 122669 (2024).

    Google Scholar 

  169. Wang, X. et al. Anisotropy links cell shapes to tissue flow during convergent extension. Proc. Natl Acad. Sci. USA 117, 13541–13551 (2020).

    Google Scholar 

  170. Aper, S. J. A. et al. Colorful protein-based fluorescent probes for collagen imaging. PLoS One 9, e114983 (2014).

    Google Scholar 

  171. Fiore, A. et al. Live imaging of the extracellular matrix with a glycan-binding fluorophore. Nat. Methods 22, 1070–1080 (2025).

    Google Scholar 

  172. Daetwyler, S. et al. Imaging of cellular dynamics from a whole organism to subcellular scale with self-driving, multiscale microscopy. Nat. Methods 22, 569–578 (2025).

    Google Scholar 

  173. Punoyuori, K. et al. Multiparameter imaging reveals clinically relevant cancer cell-stroma interaction dynamics in head and neck cancer. Cell 187, 7267–7284 (2024).

    Google Scholar 

  174. Loveless, T. B. et al. Open-ended molecular recording of sequential cellular events into DNA. Nat. Chem. Biol. 21, 512–521 (2025).

    Google Scholar 

  175. Godivier, J., Lawrence, E. A., Wang, M., Hammond, C. L. & Nowlan, N. C. Compressive stress gradients direct mechanoregulation of anisotropic growth in the zebrafish jaw joint. PLoS Comput. Biol. 20, e1010940 (2024).

    Google Scholar 

  176. Pacary, A. et al. A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration. NPJ Regen. Med. 9, 29 (2024).

    Google Scholar 

  177. Humphrey, J. D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 34, 432–441 (2020).

    Google Scholar 

  178. Loerakker, S. et al. Mechanosensitivity of Jagged–Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc. Natl Acad. Sci. USA 115, 3682–3691 (2018).

    Google Scholar 

  179. Best, C. A. et al. Differential outcomes of venous and arterial tissue engineered vascular grafts highlight the importance of coupling long-term implantation studies with computational modeling. Acta Biomater. 94, 183–194 (2019).

    Google Scholar 

  180. Emmert, M. Y. et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Transl. Med. 10, eaan4587 (2018).

    Google Scholar 

  181. Tan, W., Boodagh, P., Selvakumar, P. P. & Keyser, S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front. Bioeng. Biotechnol. 10, 1097334 (2023).

    Google Scholar 

  182. Xing, J. et al. Engineering complex anisotropic scaffolds beyond simply uniaxial alignment for tissue engineering. Adv. Funct. Mater. 32, 2110676 (2022).

    Google Scholar 

  183. Skillin, N. P. et al. Stiffness anisotropy coordinates supracellular contractility driving long-range myotube-ECM alignment. Sci. Adv. 10, eadn0235 (2024).

    Google Scholar 

  184. Jorba, I. et al. Steering cell orientation through light-based spatiotemporal modulation of the mechanical environment. Biofabrication 16, https://doi.org/10.1088/1758-5090/ad3aa6 (2024).

    Google Scholar 

  185. Xue, Y. et al. Biomimetic conductive hydrogel scaffolds with anisotropy and electrical stimulation for in vivo skeletal muscle reconstruction. Adv. Healthc. Mater. 13, e2302180 (2024).

    Google Scholar 

  186. Liu, N., Becton, M., Zhang, L., Tang, K. & Wang, X. Mechanical anisotropy of two-dimensional metamaterials: a computational study. Nanoscale Adv. 8, 2891–2900 (2019).

    Google Scholar 

  187. Burdick, J. A., Khademhosseini, A. & Langer, R. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20, 5153–5156 (2004).

    Google Scholar 

  188. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962).

    Google Scholar 

  189. Evans, E. B., Brady, S. W., Tripathi, A. & Hoffman-Kim, D. Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater. Res. 22, 14 (2018).

    Google Scholar 

  190. Keenan, T. M. & Folch, A. Biomolecular gradients in cell culture systems. Lab. Chip 8, 34–57 (2007).

    Google Scholar 

  191. Shirure, V. S. et al. Low levels of physiological interstitial flow eliminate morphogen gradients and guide angiogenesis. Angiogenesis 20, 493–504 (2017).

    Google Scholar 

  192. Guo, T. et al. Mitochondrial fission and bioenergetics mediate human lung fibroblast durotaxis. JCI Insight 8, e157348 (2023).

    Google Scholar 

  193. Ferre-Torres, J. et al. Modelling of chemotactic sprouting endothelial cells through an extracellular matrix. Front. Bioeng. Biotechnol. 11, 1145550 (2023).

    Google Scholar 

  194. Mohammed, M. et al. Studying the response of aortic endothelial cells under pulsatile flow using a compact microfluidic system. Anal. Chem. 91, 12077–12084 (2019).

    Google Scholar 

  195. Driessen, R. et al. Computational characterization of the dish-in-a-dish, a high yield culture platform for endothelial shear stress studies on the orbital shaker. Micromachines 11, 552 (2020).

    Google Scholar 

  196. Nakayama, K. H. et al. Nanoscale patterning of extracellular matrix alters endothelial function under shear stress. Nano Lett. 16, 410–419 (2016).

    Google Scholar 

  197. Yevick, H. G. et al. Architecture and migration of an epithelium on a cylindrical wire. Proc. Natl Acad. Sci. USA 112, 5944–5949 (2015).

    Google Scholar 

  198. Ye, M. et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4, 4681 (2014).

    Google Scholar 

  199. Tamiello, C., Buskermolen, A. B. C., Baaijens, F. P. T., Broers, J. L. V. & Bouten, C. V. C. Heading in the right direction: understanding cellular orientation response to complex biophysical environments. Cell Mol. Bioeng. 9, 12–37 (2016).

    Google Scholar 

  200. Chen, Y. et al. Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci. Rep. 5, 9980 (2015).

    Google Scholar 

  201. Kohn, J. C. et al. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior. Biophysical J. 108, 471–478 (2015).

    Google Scholar 

  202. Schmidt, A., Greenhalgh, A., Jockenhoevel, S., Fernandez-Colino, A. & Frydrych, M. Manufacturing of anisotropic protein-based scaffolds to precisely mimic native-tissue mechanics. Adv. Mater. Technol. 10, 2400946 (2025).

    Google Scholar 

  203. Wei, X. et al. Hierarchically biomimetic scaffolds with anisotropic micropores and nanotopological patterns to promote bone regeneration via geometric modulation. Adv. Healthc. Mater. 13, e2304178 (2024).

    Google Scholar 

  204. Garrido, C. A. et al. Hydrogels with stiffness-degradation spatial patterns control anisotropic 3D cell response. Biomater. Adv. 151, 213423 (2023).

    Google Scholar 

  205. Vedaraman, S. et al. Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based anisogels. Biomater. Sci. 9, 4329–4342 (2021).

    Google Scholar 

  206. Gaspar, V. M. et al. Advanced bottom-up engineering of living architectures. Adv. Mater. 32, 6 (2020).

    Google Scholar 

  207. Wu, H. et al. Advancing Scaffold-assisted modality for in situ osteochondral regeneration: a shift from biodegradable to bioadaptable. Adv. Mater. 36, 47 (2024).

    Google Scholar 

Download references