Advancing engineering design strategies for targeted cancer nanomedicine

advancing-engineering-design-strategies-for-targeted-cancer-nanomedicine
Advancing engineering design strategies for targeted cancer nanomedicine

References

  1. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer-chemotherapy – mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986). This seminal paper illustrates the EPR effect, demonstrating high macromolecule accumulation in tumours.

    Google Scholar 

  2. Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Rel. 65, 271–284 (2000).

    Google Scholar 

  3. Lahooti, B. et al. Targeting endothelial permeability in the EPR effect. J. Control. Rel. 361, 212–235 (2023).

    Google Scholar 

  4. Sharifi, M. et al. An updated review on EPR-based solid tumor targeting nanocarriers for cancer treatment. Cancers 14, 2868 (2022).

    Google Scholar 

  5. Bertrand, N., Wu, J., Xu, X. Y., Kamaly, N. & Farokhzad, O. C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014).

    Google Scholar 

  6. Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015).

    Google Scholar 

  7. Davis, M. E., Chen, Z. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Google Scholar 

  8. Bartlett, D. W., Su, H., Hildebrandt, I. J., Weber, W. A. & Davis, M. E. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl Acad. Sci. USA 104, 15549–15554 (2007).

    Google Scholar 

  9. Harrington, K. J. et al. Biodistribution and pharmacokinetics of 111In-DTPA-labelled pegylated liposomes in a human tumour xenograft model: implications for novel targeting strategies. Br. J. Cancer 83, 232–238 (2000).

    Google Scholar 

  10. Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018). This work investigates the physical and cellular barriers to intratumoural transport of passive and ligand-targeted nanoparticles and ultimate delivery to cancer cells after intravenous administration.

    Google Scholar 

  11. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Google Scholar 

  12. Kingston, B. R. et al. Specific endothelial cells govern nanoparticle entry into solid tumors. ACS Nano 15, 14080–14094 (2021).

    Google Scholar 

  13. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Google Scholar 

  14. Tavares, A. J. et al. Effect of removing Kupffer cells on nanoparticle tumor delivery. Proc. Natl Acad. Sci. USA 114, E10871–E10880 (2017).

    Google Scholar 

  15. Bae, Y. H. & Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Rel. 153, 198–205 (2011).

    Google Scholar 

  16. Feng, X. et al. Opportunities and challenges for inhalable nanomedicine formulations in respiratory diseases: a review. Int. J. Nanomed. 19, 1509–1538 (2024).

    Google Scholar 

  17. Khang, M. et al. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma. Sci. Transl. Med. 15, eadi1617 (2023).

    Google Scholar 

  18. De Andres, J. et al. Intrathecal drug delivery: advances and applications in the management of chronic pain patient. Front. Pain Res. 3, 900566 (2022).

    Google Scholar 

  19. Niu, L., Chu, L. Y., Burton, S. A., Hansen, K. J. & Panyam, J. Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J. Control. Rel. 294, 268–278 (2019).

    Google Scholar 

  20. Correa, S. et al. Tuning nanoparticle interactions with ovarian cancer through layer-by-layer modification of surface chemistry. ACS Nano 14, 2224–2237 (2020).

    Google Scholar 

  21. Gao, N. et al. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics 7, 1689–1704 (2017).

    Google Scholar 

  22. Wright, A. A. et al. Use and effectiveness of intraperitoneal chemotherapy for treatment of ovarian cancer. J. Clin. Oncol. 33, 2841–2847 (2015).

    Google Scholar 

  23. Palugan, L. et al. Intravesical drug delivery approaches for improved therapy of urinary bladder diseases. Int. J. Pharm. X 3, 100100 (2021).

    Google Scholar 

  24. Yoon, H. Y. et al. Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin. Drug Deliv. 17, 1555–1572 (2020).

    Google Scholar 

  25. Yun, W. S. et al. Recent studies and progress in the intratumoral administration of nano-sized drug delivery systems. Nanomaterials 13, 2225 (2023).

    Google Scholar 

  26. Talebian, S. et al. Biopolymers for antitumor implantable drug delivery systems: recent advances and future outlook. Adv. Mater. 30, 1706665 (2018).

    Google Scholar 

  27. Lan, X. et al. Microneedle-mediated delivery of lipid-coated cisplatin nanoparticles for efficient and safe cancer therapy. ACS Appl. Mater. Interfaces 10, 33060–33069 (2018).

    Google Scholar 

  28. Moradi Kashkooli, F., Jakhmola, A., Hornsby, T. K., Tavakkoli, J. & Kolios, M. C. Ultrasound-mediated nano drug delivery for treating cancer: fundamental physics to future directions. J. Control. Rel. 355, 552–578 (2023).

    Google Scholar 

  29. Wang, Y. et al. Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat. Biomed. Eng. 5, 1048–1058 (2021).

    Google Scholar 

  30. D’Amico, R. S., Aghi, M. K., Vogelbaum, M. A. & Bruce, J. N. Convection-enhanced drug delivery for glioblastoma: a review. J. Neurooncol. 151, 415–427 (2021).

    Google Scholar 

  31. Pickering, A. J. et al. Layer-by-layer polymer functionalization improves nanoparticle penetration and glioblastoma targeting in the brain. ACS Nano 17, 24154–24169 (2023).

    Google Scholar 

  32. Wicki, A., Witzigmann, D., Balasubramanian, V. & Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Rel. 200, 138–157 (2015).

    Google Scholar 

  33. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    Google Scholar 

  34. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3, 703–717 (2008).

    Google Scholar 

  35. Magnussen, A. L. & Mills, I. G. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br. J. Cancer 125, 324–336 (2021).

    Google Scholar 

  36. Mpekris, F. et al. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl Acad. Sci. USA 117, 3728–3737 (2020).

    Google Scholar 

  37. Hartl, N., Adams, F. & Merkel, O. M. From adsorption to covalent bonding: apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier. Adv. Ther. 4, 2000092 (2021).

    Google Scholar 

  38. Brown, T. D., Habibi, N., Wu, D., Lahann, J. & Mitragotri, S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood–brain barrier. ACS Biomater. Sci. Eng. 6, 4916–4928 (2020).

    Google Scholar 

  39. Chen, S. et al. Effect of cationic charge density on transcytosis of polyethylenimine. Biomacromolecules 22, 5139–5150 (2021).

    Google Scholar 

  40. Lamson, N. G. et al. Trafficking through the blood–brain barrier is directed by core and outer surface components of layer-by-layer nanoparticles. Bioeng. Transl. Med. 9, e10636 (2024).

    Google Scholar 

  41. Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev. 71, 2–14 (2014).

    Google Scholar 

  42. Wiley, D. T., Webster, P., Gale, A. & Davis, M. E. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc. Natl Acad. Sci. USA 110, 8662–8667 (2013).

    Google Scholar 

  43. Georgieva, J. V. et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol. Ther. 19, 318–325 (2011).

    Google Scholar 

  44. Saucier-Sawyer, J. K. et al. Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J. Control. Rel. 232, 103–112 (2016).

    Google Scholar 

  45. Biddlestone-Thorpe, L. et al. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents. Adv. Drug Deliv. Rev. 64, 605–613 (2012).

    Google Scholar 

  46. Curtis, C., Toghani, D., Wong, B. & Nance, E. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf. B Biointerfaces 170, 673–682 (2018).

    Google Scholar 

  47. Jiang, X., Zhao, H. & Li, W. Microneedle-mediated transdermal delivery of drug-carrying nanoparticles. Front. Bioeng. Biotechnol. 10, 840395 (2022).

    Google Scholar 

  48. Koenitz, L., Crean, A. & Vucen, S. Pharmacokinetic differences between subcutaneous injection and intradermal microneedle delivery of protein therapeutics. Eur. J. Pharm. Biopharm. 204, 114517 (2024).

    Google Scholar 

  49. Wang, J. C. et al. Microneedles-mediated intradermal delivery of paclitaxel/anti-PD-1 for efficient and safe triple-negative breast cancer therapy. Adv. Ther. 7, 2300362 (2024).

    Google Scholar 

  50. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Google Scholar 

  51. Yousefpour, P., Ni, K. & Irvine, D. J. Targeted modulation of immune cells and tissues using engineered biomaterials. Nat. Rev. Bioeng. 1, 107–124 (2023).

    Google Scholar 

  52. Ceelen, W. P. & Flessner, M. F. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat. Rev. Clin. Oncol. 7, 108–115 (2010).

    Google Scholar 

  53. Dakwar, G. R. et al. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis — mission possible? Adv. Drug Deliv. Rev. 108, 13–24 (2017).

    Google Scholar 

  54. Aznar, M. A. et al. Intratumoral delivery of immunotherapy — act locally, think globally. J. Immunol. 198, 31–39 (2017).

    Google Scholar 

  55. Champiat, S. et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin. Cancer Res. 27, 665–679 (2021).

    Google Scholar 

  56. Huang, A. et al. Human intratumoral therapy: linking drug properties and tumor transport of drugs in clinical trials. J. Control. Rel. 326, 203–221 (2020).

    Google Scholar 

  57. Hamid, O., Ismail, R. & Puzanov, I. Intratumoral immunotherapy — update 2019. Oncologist 25, e423–e438 (2019).

    Google Scholar 

  58. Holback, H. & Yeo, Y. Intratumoral drug delivery with nanoparticulate carriers. Pharm. Res. 28, 1819–1830 (2011).

    Google Scholar 

  59. J. Saadh, M. et al. Nanoparticle-based targeting of pancreatic tumor stroma and extracellular matrix: a promising approach for improved treatment. J. Drug Deliv. Sci. Technol. 99, 105938 (2024).

    Google Scholar 

  60. Herrera, V. L. M. et al. Evaluation of expansile nanoparticle tumor localization and efficacy in a cancer stem cell-derived model of pancreatic peritoneal carcinomatosis. Nanomedicine 11, 1001–1015 (2016).

    Google Scholar 

  61. Zhang, B. et al. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials 35, 4088–4098 (2014).

    Google Scholar 

  62. Passos, J. S., Lopes, L. B. & Panitch, A. Collagen-binding nanoparticles for paclitaxel encapsulation and breast cancer treatment. ACS Biomater. Sci. Eng. 9, 6805–6820 (2023).

    Google Scholar 

  63. Chaib, M., Chauhan, S. C. & Makowski, L. Friend or foe? recent strategies to target myeloid cells in cancer. Front. Cell Dev. Biol. 8, 351 (2020).

    Google Scholar 

  64. Vu-Quang, H. et al. Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo. Carbohydr. Polym. 88, 780–788 (2012).

    Google Scholar 

  65. Hudgins, P. A., Anzai, Y., Morris, M. R. & Lucas, M. A. Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: a phase 2 dose study. Am. J. Neuroradiol. 23, 649–656 (2002).

    Google Scholar 

  66. Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    Google Scholar 

  67. Xu, L. et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J. Hematol. Oncol. 15, 87 (2022). This review illustrates the complex role of the tumour immune environment and therapeutic strategies to modulate said environment to promote anticancer responses.

    Google Scholar 

  68. Zhang, C. et al. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J. Control. Rel. 256, 170–181 (2017).

    Google Scholar 

  69. Xu, Y. et al. Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials 284, 121489 (2022).

    Google Scholar 

  70. Cao, Y. et al. Dendritic cell-mimicking nanoparticles promote mrna delivery to lymphoid organs. Adv. Sci. 10, 2302423 (2023).

    Google Scholar 

  71. Mortara, L. et al. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front. Immunol. 9, 2905 (2018).

    Google Scholar 

  72. Chu, J. et al. Natural killer cells: a promising immunotherapy for cancer. J. Transl. Med. 20, 240 (2022).

    Google Scholar 

  73. Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

    Google Scholar 

  74. Saw, P. E., Chen, J. & Song, E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer 8, 527–555 (2022). This review describes the role of CAFs in tumour progression and therapeutic strategies that are utilized to target this cell population.

    Google Scholar 

  75. Xiao, Z. & Puré, E. The fibroinflammatory response in cancer. Nat. Rev. Cancer 25, 399–425 (2025).

    Google Scholar 

  76. Zheng, A., Wei, Y., Zhao, Y., Zhang, T. & Ma, X. The role of cancer-associated mesothelial cells in the progression and therapy of ovarian cancer. Front. Immunol. 13, 1013506 (2022).

    Google Scholar 

  77. Huang, H. et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell 40, 656–673.e657 (2022).

    Google Scholar 

  78. Zhao, Y. et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl Acad. Sci. USA 116, 2210–2219 (2019).

    Google Scholar 

  79. Zhang, Y., Wu, J. L., Lazarovits, J. & Chan, W. C. An analysis of the binding function and structural organization of the protein corona. J. Am. Chem. Soc. 142, 8827–8836 (2020).

    Google Scholar 

  80. Corbo, C. et al. Unveiling the in vivo protein corona of circulating leukocyte-like carriers. ACS Nano 11, 3262–3273 (2017).

    Google Scholar 

  81. Grunér, M. S., Kauscher, U., Linder, M. & Monopoli, M. An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. J. Proteom. 137, 52–58 (2016).

    Google Scholar 

  82. Mosquera, J., García, I., Henriksen-Lacey, M., González-Rubio, G. & Liz-Marzán, L. M. Reducing protein corona formation and enhancing colloidal stability of gold nanoparticles by capping with silica monolayers. Chem. Mater. 31, 57–61 (2018).

    Google Scholar 

  83. Hadjidemetriou, M., Al-Ahmady, Z. & Kostarelos, K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 8, 6948–6957 (2016).

    Google Scholar 

  84. Xiao, W. & Gao, H. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system. Int. J. Pharm. 552, 328–339 (2018).

    Google Scholar 

  85. Lazarovits, J. et al. Supervised learning and mass spectrometry predicts the in vivo fate of nanomaterials. ACS Nano 13, 8023–8034 (2019).

    Google Scholar 

  86. Ngo, W. et al. Identifying cell receptors for the nanoparticle protein corona using genome screens. Nat. Chem. Biol. 18, 1023–1031 (2022).

    Google Scholar 

  87. Montizaan, D. et al. Genome-wide forward genetic screening to identify receptors and proteins mediating nanoparticle uptake and intracellular processing. Nat. Nanotechnol. 19, 1022–1031 (2024). This work identified cell receptors, including lipoprotein receptors and glycosaminoglycans, implicated in nanoparticle uptake, through a genome-wide screening.

    Google Scholar 

  88. Mirshafiee, V., Mahmoudi, M., Lou, K., Cheng, J. & Kraft, M. L. Protein corona significantly reduces active targeting yield. Chem. Commun. 49, 2557–2559 (2013).

    Google Scholar 

  89. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Google Scholar 

  90. Wang, H. et al. Interrogation of folic acid-functionalized nanomedicines: the regulatory roles of plasma proteins reexamined. ACS Nano 14, 14779–14789 (2020).

    Google Scholar 

  91. Xiao, W. et al. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int. J. Pharm. 538, 105–111 (2018).

    Google Scholar 

  92. Bilardo, R., Traldi, F., Vdovchenko, A. & Resmini, M. Influence of surface chemistry and morphology of nanoparticles on protein corona formation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 14, e1788 (2022).

    Google Scholar 

  93. Barz, M., Parak, W. J. & Zentel, R. Concepts and approaches to reduce or avoid protein corona formation on nanoparticles: challenges and opportunities. Adv. Sci. 11, 2402935 (2024).

    Google Scholar 

  94. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Google Scholar 

  95. Chen, D., Parayath, N., Ganesh, S., Wang, W. & Amiji, M. The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for in vivo targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale 11, 18806–18824 (2019).

    Google Scholar 

  96. Caracciolo, G. et al. Human biomolecular corona of liposomal doxorubicin: the overlooked factor in anticancer drug delivery. ACS Appl. Mater. Interfaces 10, 22951–22962 (2018).

    Google Scholar 

  97. Papi, M. et al. Clinically approved PEGylated nanoparticles are covered by a protein corona that boosts the uptake by cancer cells. Nanoscale 9, 10327–10334 (2017).

    Google Scholar 

  98. Gao, Y., Joshi, M., Zhao, Z. & Mitragotri, S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 9, e10600 (2024). This review presents the range of investigational and clinically approved PEGylated therapeutics, PEG engineering strategies and challenges.

    Google Scholar 

  99. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Google Scholar 

  100. Chen, D., Ganesh, S., Wang, W. & Amiji, M. The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale 11, 8760–8775 (2019).

    Google Scholar 

  101. Pozzi, D. et al. Effect of polyethyleneglycol (PEG) chain length on the bio–nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale 6, 2782–2792 (2014).

    Google Scholar 

  102. Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022).

    Google Scholar 

  103. Besin, G. et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons 3, 282–293 (2019). This study demonstrates the accelerated blood clearance of repeat doses of intravenous PEGylated lipid nanoparticles and illustrates a B cell-driven response.

    Google Scholar 

  104. Wang, X., Ishida, T. & Kiwada, H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control. Rel. 119, 236–244 (2007).

    Google Scholar 

  105. Wang, H. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. npj Vaccines 8, 169 (2023).

    Google Scholar 

  106. Schöttler, S. et al. Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Google Scholar 

  107. Overby, C., Park, S., Summers, A. & Benoit, D. S. W. Zwitterionic peptides: tunable next-generation stealth nanoparticle modifications. Bioact. Mater. 27, 113–124 (2023).

    Google Scholar 

  108. García, K. P. et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10, 2516–2529 (2014).

    Google Scholar 

  109. Müller, J. et al. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 115, 1–8 (2017).

    Google Scholar 

  110. Simon, J. et al. Noncovalent targeting of nanocarriers to immune cells with polyphosphoester-based surfactants in human blood plasma. Adv. Sci. 6, 1901199 (2019). This study demonstrates the multifunctional design of polymers serving as a nanoparticle surface chemistry to increase targeting to specific cells and also reduce nonspecific uptake by off-target cells.

    Google Scholar 

  111. Sarparanta, M. et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: stability, plasma protein adsorption and biodistribution. Mol. Pharm. 9, 654–663 (2012).

    Google Scholar 

  112. Moghimi, S. M., Muir, I., Illum, L., Davis, S. S. & Kolb-Bachofen, V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim. Biophys. Acta Mol. Cell Res. 1179, 157–165 (1993).

    Google Scholar 

  113. Shi, D. et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 180, 114079 (2022).

    Google Scholar 

  114. Hui, Y. et al. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano 13, 7410–7424 (2019). This review presents how mechanical properties of nanoparticles affect uptake and distribution, highlighting other physiochemical properties of nanoparticles that have a role in their trafficking.

    Google Scholar 

  115. Kong, S. M., Costa, D. F., Jagielska, A., Vliet, K. J. V. & Hammond, P. T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl Acad. Sci. USA 118, e2104826118 (2021).

    Google Scholar 

  116. Sykes, E. A., Chen, J., Zheng, G. & Chan, W. C. W. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8, 5696–5706 (2014).

    Google Scholar 

  117. Cong, V. T. et al. Can the shape of nanoparticles enable the targeting to cancer cells over healthy cells? Adv. Funct. Mater. 31, 2007880 (2021).

    Google Scholar 

  118. Elci, S. G. et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10, 5536–5542 (2016).

    Google Scholar 

  119. Zelepukin, I. V. et al. Fast processes of nanoparticle blood clearance: comprehensive study. J. Control. Rel. 326, 181–191 (2020).

    Google Scholar 

  120. Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).

    Google Scholar 

  121. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Google Scholar 

  122. Guo, P. et al. Nanoparticle elasticity directs tumor uptake. Nat. Commun. 9, 130 (2018).

    Google Scholar 

  123. Marques, A. C., Costa, P. J., Velho, S. & Amaral, M. H. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J. Control. Rel. 320, 180–200 (2020).

    Google Scholar 

  124. Chen, F. et al. Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat. Commun. 9, 4141 (2018).

    Google Scholar 

  125. Schau, I. et al. Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis. Sci. Rep. 9, 3299 (2019).

    Google Scholar 

  126. Zhang, C. et al. Co-delivery of 5-fluorodeoxyuridine and doxorubicin via gold nanoparticle equipped with affibody–DNA hybrid strands for targeted synergistic chemotherapy of HER2 overexpressing breast cancer. Sci. Rep. 10, 22015 (2020).

    Google Scholar 

  127. Dissanayake, S., Denny, W. A., Gamage, S. & Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Rel. 250, 62–76 (2017).

    Google Scholar 

  128. Wu, X., Chen, J., Wu, M. & Zhao, J. X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5, 322–344 (2015).

    Google Scholar 

  129. Farran, B. et al. Folate-conjugated nanovehicles: strategies for cancer therapy. Mater. Sci. Eng. C 107, 110341 (2020).

    Google Scholar 

  130. Koneru, T. et al. Transferrin: biology and use in receptor-targeted nanotherapy of gliomas. ACS Omega 6, 8727–8733 (2021).

    Google Scholar 

  131. Kizhakkanoodan, K. S., Rallapalli, Y., Praveena, J., Acharya, S. & Guru, B. R. Cancer nanomedicine: emergence, expansion, and expectations. SN Appl. Sci. 5, 385 (2023).

    Google Scholar 

  132. Ly, P.-D. et al. Recent advances in surface decoration of nanoparticles in drug delivery. Front. Nanotechnol. 6, 1456939 (2024).

    Google Scholar 

  133. Richardson, J. J. et al. Innovation in layer-by-layer assembly. Chem. Rev. 116, 14828–14867 (2016).

    Google Scholar 

  134. Such, G. K., Johnston, A. P. R. & Caruso, F. Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem. Soc. Rev. 40, 19–29 (2011).

    Google Scholar 

  135. Monge, C., Almodovar, J., Boudou, T. & Picart, C. Spatio-temporal control of LbL films for biomedical applications: from 2D to 3D. Adv. Healthc. Mater. 4, 811–830 (2015).

    Google Scholar 

  136. Morton, S. W., Poon, Z. & Hammond, P. T. The architecture and biological performance of drug-loaded LbL nanoparticles. Biomaterials 34, 5328–5335 (2013).

    Google Scholar 

  137. Boyer, C. et al. Glycopolymer decoration of gold nanoparticles using a LbL approach. Macromolecules 43, 3775–3784 (2010).

    Google Scholar 

  138. Peng, Q. et al. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34, 8521–8530 (2013).

    Google Scholar 

  139. Dal Magro, R. et al. Artificial apolipoprotein corona enables nanoparticle brain targeting. Nanomed. Nanotechnol. Biol. Med. 14, 429–438 (2018).

    Google Scholar 

  140. Kim, J. et al. Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma. Proc. Natl Acad. Sci. USA 117, 24205–24212 (2020).

    Google Scholar 

  141. Caracciolo, G. et al. Selective targeting capability acquired with a protein corona adsorbed on the surface of 1,2-dioleoyl-3-trimethylammonium propane/DNA nanoparticles. ACS Appl. Mater. Interfaces 5, 13171–13179 (2013).

    Google Scholar 

  142. Tonigold, M. et al. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat. Nanotechnol. 13, 862–869 (2018). This work demonstrates that nanoparticles with non-covalently adsorbed antibodies outperform those with covalently attached antibodies at targeting, even upon protein corona formation.

    Google Scholar 

  143. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Rel. 114, 100–109 (2006).

    Google Scholar 

  144. Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 7, 5577–5591 (2012).

    Google Scholar 

  145. Sekar, R. P. et al. Poly(l-glutamic acid) augments the transfection performance of lipophilic polycations by overcoming tradeoffs among cytotoxicity, pDNA delivery efficiency, and serum stability. RSC Appl. Polym. 2, 701–718 (2024).

    Google Scholar 

  146. Wang, C. et al. Poly(α-glutamic acid) combined with polycation as serum-resistant carriers for gene delivery. Int. J. Pharm. 398, 237–245 (2010).

    Google Scholar 

  147. Boehnke, N., Dolph, K. J., Juarez, V. M., Lanoha, J. M. & Hammond, P. T. Electrostatic conjugation of nanoparticle surfaces with functional peptide motifs. Bioconjug. Chem. 31, 2211–2219 (2020).

    Google Scholar 

  148. Gessner, I., Klimpel, A., Klußmann, M., Neundorf, I. & Mathur, S. Interdependence of charge and secondary structure on cellular uptake of cell penetrating peptide functionalized silica nanoparticles. Nanoscale Adv. 2, 453–462 (2020).

    Google Scholar 

  149. Conte, C. et al. Non-covalent strategies to functionalize polymeric nanoparticles with NGR peptides for targeting breast cancer. Int. J. Pharm. 633, 122618 (2023).

    Google Scholar 

  150. Lesley, J., Hascall, V. C., Tammi, M. & Hyman, R. Hyaluronan binding by cell surface CD44. J. Biol. Chem. 275, 26967–26975 (2000).

    Google Scholar 

  151. Dubacheva, G. V., Curk, T., Auzély-Velty, R., Frenkel, D. & Richter, R. P. Designing multivalent probes for tunable superselective targeting. Proc. Natl Acad. Sci. USA 112, 5579–5584 (2015).

    Google Scholar 

  152. Passos Gibson, V. et al. Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials 302, 122341 (2023).

    Google Scholar 

  153. Sacks, J. D. & Barbolina, M. V. Expression and function of CD44 in epithelial ovarian carcinoma. Biomolecules 5, 3051–3066 (2015).

    Google Scholar 

  154. Mattheolabakis, G., Milane, L., Singh, A. & Amiji, M. M. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J. Drug Target. 23, 605–618 (2015).

    Google Scholar 

  155. Almalik, A. et al. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona. Sci. Rep. 7, 10542 (2017).

    Google Scholar 

  156. Martens, T. F. et al. Coating nanocarriers with hyaluronic acid facilitates intravitreal drug delivery for retinal gene therapy. J. Control. Rel. 202, 83–92 (2015).

    Google Scholar 

  157. Tian, H. et al. Uniform core–shell nanoparticles with thiolated hyaluronic acid coating to enhance oral delivery of insulin. Adv. Healthc. Mater. 7, 1800285 (2018).

    Google Scholar 

  158. Zhou, M. et al. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv. 25, 716–722 (2018).

    Google Scholar 

  159. Nabar, N., Dacoba, T. G., Covarrubias, G., Romero-Cruz, D. & Hammond, P. T. Electrostatic adsorption of polyanions onto lipid nanoparticles controls uptake, trafficking, and transfection of RNA and DNA therapies. Proc. Natl Acad. Sci. USA 121, e2307809121 (2024).

    Google Scholar 

  160. Dreaden, E. C. et al. Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 8, 8374–8382 (2014).

    Google Scholar 

  161. Deiss-Yehiely, E. et al. Surface presentation of hyaluronic acid modulates nanoparticle-cell association. Bioconjug. Chem. 33, 2065–2075 (2022). This work investigates the impact of nanoparticle surface modification with covalent versus adsorbed polymer as well as polymer architecture on cell association.

    Google Scholar 

  162. Vasić, K. et al. Structural and magnetic characteristics of carboxymethyl dextran coated magnetic nanoparticles: from characterization to immobilization application. React. Funct. Polym. 148, 104481 (2020).

    Google Scholar 

  163. Huang, B. et al. Amphoteric natural starch-coated polymer nanoparticles with excellent protein corona-free and targeting properties. Nanoscale 12, 5834–5847 (2020).

    Google Scholar 

  164. Min, K. A., Yu, F., Yang, V. C., Zhang, X. & Rosania, G. R. Transcellular transport of heparin-coated magnetic iron oxide nanoparticles (Hep-MION) under the influence of an applied magnetic field. Pharmaceutics 2, 119–135 (2010).

    Google Scholar 

  165. Geijtenbeek, T. B. H. & Gringhuis, S. I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

    Google Scholar 

  166. Vu-Quang, H. et al. Immune cell-specific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging. Carbohydr. Polym. 87, 1159–1168 (2012).

    Google Scholar 

  167. Kalia, N., Singh, J. & Kaur, M. The role of dectin-1 in health and disease. Immunobiology 226, 152071 (2021).

    Google Scholar 

  168. Harisinghani, M. G. et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).

    Google Scholar 

  169. Raynal, I. et al. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Investig. Radiol. 39, 56–63 (2004).

    Google Scholar 

  170. Cambi, A. & Figdor, C. G. Dual function of C-type lectin-like receptors in the immune system. Curr. Opin. Cell Biol. 15, 539–546 (2003).

    Google Scholar 

  171. Lee, R. T. et al. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology 21, 512–520 (2011).

    Google Scholar 

  172. Chen, F., Huang, G. & Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem. 12, 161–171 (2020).

    Google Scholar 

  173. Calvaresi, E. C. & Hergenrother, P. J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 4, 2319–2333 (2013).

    Google Scholar 

  174. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Google Scholar 

  175. Saini, K. & Bandyopadhyaya, R. Transferrin-conjugated polymer-coated mesoporous silica nanoparticles loaded with gemcitabine for killing pancreatic cancer cells. ACS Appl. Nano Mater. 3, 229–240 (2020).

    Google Scholar 

  176. Stevens, D. M. et al. Application of a scavenger receptor A1-targeted polymeric prodrug platform for lymphatic drug delivery in HIV. Mol. Pharm. 17, 3794–3812 (2020).

    Google Scholar 

  177. Sun, C. et al. Polymeric nanomedicine with “Lego” surface allowing modular functionalization and drug encapsulation. ACS Appl. Mater. Interfaces 10, 25090–25098 (2018).

    Google Scholar 

  178. Kim, S. et al. Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Mater. Horiz. 4, 450–455 (2017).

    Google Scholar 

  179. Fang, R. H., Gao, W. & Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    Google Scholar 

  180. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015).

    Google Scholar 

  181. Ren, X. et al. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 92, 13–24 (2016).

    Google Scholar 

  182. Rao, L. et al. Erythrocyte membrane-coated upconversion nanoparticles with minimal protein adsorption for enhanced tumor imaging. ACS Appl. Mater. Interfaces 9, 2159–2168 (2017). This study demonstrated that erythrocyte membrane coatings on nanoparticles notably reduce protein adsorption and preserve the targeting abilities of other surface ligands.

    Google Scholar 

  183. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Google Scholar 

  184. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 8, 61–68 (2013).

    Google Scholar 

  185. Pitchaimani, A. et al. Biomimetic natural killer membrane camouflaged polymeric nanoparticle for targeted bioimaging. Adv. Funct. Mater. 29, 1806817 (2019).

    Google Scholar 

  186. Cao, H. et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 10, 7738–7748 (2016).

    Google Scholar 

  187. Kang, T. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11, 1397–1411 (2017).

    Google Scholar 

  188. Chen, Z. et al. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10, 10049–10057 (2016).

    Google Scholar 

  189. Zhu, J.-Y. et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 16, 5895–5901 (2016).

    Google Scholar 

  190. Liu, Z. et al. Cell membrane-camouflaged liposomes for tumor cell-selective glycans engineering and imaging in vivo. Proc. Natl Acad. Sci. USA 118, e2022769118 (2021).

    Google Scholar 

  191. Ma, X. et al. Tumor–antigen activated dendritic cell membrane-coated biomimetic nanoparticles with orchestrating immune responses promote therapeutic efficacy against glioma. ACS Nano 17, 2341–2355 (2023).

    Google Scholar 

  192. Fang, R. H. et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14, 2181–2188 (2014).

    Google Scholar 

  193. Kou, L. et al. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol. 9, 27 (2018).

    Google Scholar 

  194. de Almeida, M. S. et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 50, 5397–5434 (2021).

    Google Scholar 

  195. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017). This review discusses nanoparticle uptake and intracellular trafficking, and explores the impact of nanoparticle size, hydrophobicity, surface charge and functionality.

    Google Scholar 

  196. Rennick, J. J., Johnston, A. P. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021). This review presents advances in understanding cellular uptake of nanoparticles and discusses limitations and alternatives to experimental approaches to study endocytosis.

    Google Scholar 

  197. Chakraborty, A. & Jana, N. R. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett. 6, 3688–3697 (2015).

    Google Scholar 

  198. Rewatkar, P. V., Parton, R. G., Parekh, H. S. & Parat, M.-O. Are caveolae a cellular entry route for non-viral therapeutic delivery systems? Adv. Drug Deliv. Rev. 91, 92–108 (2015).

    Google Scholar 

  199. Hong, E. et al. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 18, 4309–4321 (2018).

    Google Scholar 

  200. França, A. et al. Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine 6, 1175–1188 (2011).

    Google Scholar 

  201. Cai, H., Liang, Z., Huang, W., Wen, L. & Chen, G. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int. J. Pharm. 532, 55–65 (2017).

    Google Scholar 

  202. Tan, X. et al. Cell-penetrating peptide together with PEG-modified mesostructured silica nanoparticles promotes mucous permeation and oral delivery of therapeutic proteins and peptides. Biomater. Sci. 7, 2934–2950 (2019).

    Google Scholar 

  203. Margus, H., Arukuusk, P., Langel, U. & Pooga, M. Characteristics of cell-penetrating peptide/nucleic acid nanoparticles. Mol. Pharm. 13, 172–179 (2016).

    Google Scholar 

  204. He, Z. et al. Scalable production of core–shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin. Nanoscale 10, 3307–3319 (2018).

    Google Scholar 

  205. Dalal, C. & Jana, N. R. Galactose multivalency effect on the cell uptake mechanism of bioconjugated nanoparticles. J. Phys. Chem. C 122, 25651–25660 (2018).

    Google Scholar 

  206. Dalal, C., Saha, A. & Jana, N. R. Nanoparticle multivalency directed shifting of cellular uptake mechanism. J. Phys. Chem. C 120, 6778–6786 (2016).

    Google Scholar 

  207. Moradi, E., Vllasaliu, D., Garnett, M., Falcone, F. & Stolnik, S. Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Adv. 2, 3025–3033 (2012).

    Google Scholar 

  208. Abstiens, K., Gregoritza, M. & Goepferich, A. M. Ligand density and linker length are critical factors for multivalent nanoparticle–receptor interactions. ACS Appl. Mater. Interfaces 11, 1311–1320 (2018).

    Google Scholar 

  209. Cao, J. et al. The effects of ligand valency and density on the targeting ability of multivalent nanoparticles based on negatively charged chitosan nanoparticles. Colloids Surf. B Biointerfaces 161, 508–518 (2018).

    Google Scholar 

  210. Ye, Z. et al. Tumour‐targeted drug delivery with mannose‐functionalized nanoparticles self‐assembled from amphiphilic β‐cyclodextrins. Chemistry 22, 15216–15221 (2016).

    Google Scholar 

  211. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Google Scholar 

  212. Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Google Scholar 

  213. Kube, S. et al. Fusogenic liposomes as nanocarriers for the delivery of intracellular proteins. Langmuir 33, 1051–1059 (2017).

    Google Scholar 

  214. Ermilova, I. & Swenson, J. DOPC versus DOPE as a helper lipid for gene-therapies: molecular dynamics simulations with DLin-MC3-DMA. Phys. Chem. Chem. Phys. 22, 28256–28268 (2020).

    Google Scholar 

  215. Parodi, A. et al. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine 10, 1923–1940 (2015).

    Google Scholar 

  216. Kodama, Y. et al. Quaternary complexes modified from pDNA and poly-l-lysine complexes to enhance pH-buffering effect and suppress cytotoxicity. J. Pharm. Sci. 104, 1470–1477 (2015).

    Google Scholar 

  217. Kim, J., Kang, Y., Tzeng, S. Y. & Green, J. J. Synthesis and application of poly(ethylene glycol)-co-poly (β-amino ester) copolymers for small cell lung cancer gene therapy. Acta Biomater. 41, 293–301 (2016).

    Google Scholar 

  218. Pan, L., Liu, J. & Shi, J. Cancer cell nucleus-targeting nanocomposites for advanced tumor therapeutics. Chem. Soc. Rev. 47, 6930–6946 (2018).

    Google Scholar 

  219. Yue, Z.-G. et al. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12, 2440–2446 (2011).

    Google Scholar 

  220. Li, N. et al. Nuclear-targeted siRNA delivery for long-term gene silencing. Chem. Sci. 8, 2816–2822 (2017).

    Google Scholar 

  221. Pan, L., Liu, J., He, Q. & Shi, J. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater. 26, 6742–6748 (2014).

    Google Scholar 

  222. Tabish, T. A. & Hamblin, M. R. Mitochondria-targeted nanoparticles (mitoNANO): an emerging therapeutic shortcut for cancer. Biomater. Biosyst. 3, 100023 (2021).

    Google Scholar 

  223. Chakraborty, A. & Jana, N. R. Design and synthesis of triphenylphosphonium functionalized nanoparticle probe for mitochondria targeting and imaging. J. Phys. Chem. C 119, 2888–2895 (2015).

    Google Scholar 

  224. Chen, S. et al. Mitochondria-targeting “Nanoheater” for enhanced photothermal/chemo-therapy. Biomaterials 117, 92–104 (2017).

    Google Scholar 

  225. Acharya, S. & Hill, R. A. High efficacy gold-KDEL peptide-siRNA nanoconstruct-mediated transfection in C2C12 myoblasts and myotubes. Nanomed. Nanotechnol. Biol. Med. 10, 329–337 (2014).

    Google Scholar 

  226. Shi, N.-Q., Li, Y., Zhang, Y., Li, Z.-Q. & Qi, X.-R. Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. Int. J. Nanomed. 13, 5537–5559 (2018).

    Google Scholar 

  227. Chen, L. et al. Cascade delivery to golgi apparatus and on‐site formation of subcellular drug reservoir for cancer metastasis suppression. Small 19, 2204747 (2023).

    Google Scholar 

  228. Chen, L. et al. Exocytosis blockade of endoplasmic reticulum-targeted nanoparticle enhances immunotherapy. Nano Today 42, 101356 (2022).

    Google Scholar 

  229. Li, H. et al. Chondroitin sulfate-linked prodrug nanoparticles target the Golgi apparatus for cancer metastasis treatment. Acs Nano 13, 9386–9396 (2019).

    Google Scholar 

  230. Luo, J., Gong, T. & Ma, L. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr. Polym. 249, 116887 (2020).

    Google Scholar 

  231. Zhao, Y. et al. Integrating organoids and organ-on-a-chip devices. Nat. Rev. Bioeng. 2, 588–608 (2024).

    Google Scholar 

  232. Astashkina, A. I. et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials 35, 6323–6331 (2014).

    Google Scholar 

  233. Baek, A. et al. Novel organoid culture system for improved safety assessment of nanomaterials. Nano Lett. 24, 805–813 (2024).

    Google Scholar 

  234. Zhang, Z., Rahmat, J. N., Mahendran, R. & Zhang, Y. Controllable assembly of upconversion nanoparticles enhanced tumor cell penetration and killing efficiency. Adv. Sci. 7, 2001831 (2020).

    Google Scholar 

  235. Lu, M. et al. Protein absorption alters the cellular targeting of glycopolymeric nanoparticles. J. Drug Deliv. Sci. Technol. 102, 106334 (2024).

    Google Scholar 

  236. Kumari, M., Acharya, A. & Krishnamurthy, P. T. Antibody-conjugated nanoparticles for target-specific drug delivery of chemotherapeutics. Beilstein J. Nanotechnol. 14, 912–926 (2023).

    Google Scholar 

  237. Tošić, I. et al. Lipidome-based targeting of STAT3-driven breast cancer cells using poly-l-glutamic acid-coated layer-by-layer nanoparticles. Mol. Cancer Ther. 20, 726–738 (2021).

    Google Scholar 

  238. Camorani, S. et al. Bispecific aptamer-decorated and light-triggered nanoparticles targeting tumor and stromal cells in breast cancer derived organoids: implications for precision phototherapies. J. Exp. Clin. Cancer Res. 43, 92 (2024).

    Google Scholar 

  239. McCarthy, B., Cudykier, A., Singh, R., Levi-Polyachenko, N. & Soker, S. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Sci. Rep. 11, 1532 (2021).

    Google Scholar 

  240. Ahn, S. I. et al. Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nat. Commun. 11, 175 (2020).

    Google Scholar 

  241. Straehla, J. P. et al. A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier-penetrant nanoparticles. Proc. Natl Acad. Sci. USA 119, e2118697119 (2022).

    Google Scholar 

  242. Lin, D. S. Y., Guo, F. & Zhang, B. Modeling organ-specific vasculature with organ-on-a-chip devices. Nanotechnology 30, 024002 (2019).

    Google Scholar 

  243. Wang, H.-F. et al. Tumor-vasculature-on-a-chip for investigating nanoparticle extravasation and tumor accumulation. ACS Nano 12, 11600–11609 (2018). This work demonstrates the use of organ-on-a-chip platforms to evaluate the trafficking of nanoparticle formulations across biological barriers, specifically extravasation and the tumour extracellular matrix.

    Google Scholar 

  244. Lu, R., Lee, B. J. & Lee, E. Three-dimensional lymphatics-on-a-chip reveals distinct, size-dependent nanoparticle transport mechanisms in lymphatic drug delivery. ACS Biomater. Sci. Eng. 10, 5752–5763 (2024).

    Google Scholar 

  245. Sun, W. et al. Organ-on-a-chip for cancer and immune organs modeling. Adv. Healthc. Mater. 8, 1801363 (2019).

    Google Scholar 

  246. Tian, C., Zheng, S., Liu, X. & Kamei, K.-i Tumor-on-a-chip model for advancement of anti-cancer nano drug delivery system. J. Nanobiotechnol. 20, 338 (2022).

    Google Scholar 

  247. Li, L., Gokduman, K., Gokaltun, A., Yarmush, M. L. & Usta, O. B. A microfluidic 3D hepatocyte chip for hepatotoxicity testing of nanoparticles. Nanomedicine 14, 2209–2226 (2019).

    Google Scholar 

  248. Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

    Google Scholar 

  249. Ozkan, A., Ghousifam, N., Hoopes, P. J., Yankeelov, T. E. & Rylander, M. N. In vitro vascularized liver and tumor tissue microenvironments on a chip for dynamic determination of nanoparticle transport and toxicity. Biotechnol. Bioeng. 116, 1201–1219 (2019).

    Google Scholar 

  250. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Google Scholar 

  251. Lin, Q., Fathi, P. & Chen, X. Nanoparticle delivery in vivo: a fresh look from intravital imaging. eBioMedicine 59, 102958 (2020).

    Google Scholar 

  252. Miller, M. A. & Weissleder, R. Imaging the pharmacology of nanomaterials by intravital microscopy: toward understanding their biological behavior. Adv. Drug Deliv. Rev. 113, 61–86 (2017). This review explores the potential of intravital microscopy to study the barriers and mechanisms of nanoparticle trafficking and targeting in vivo.

    Google Scholar 

  253. Peng, X., Wang, Y., Zhang, J., Zhang, Z. & Qi, S. Intravital imaging of the functions of immune cells in the tumor microenvironment during immunotherapy. Front. Immunol. 14, 1288273 (2023).

    Google Scholar 

  254. Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1–7 (2024). This work screened libraries of lipid designs to identify potent candidates for nanoparticle-mediated delivery of mRNA, using machine learning and combinatorial chemistry tools.

    Google Scholar 

  255. Kumar, R., Le, N., Oviedo, F., Brown, M. E. & Reineke, T. M. Combinatorial polycation synthesis and causal machine learning reveal divergent polymer design rules for effective pDNA and ribonucleoprotein delivery. JACS Au 2, 428–442 (2022).

    Google Scholar 

  256. Ortiz-Perez, A., van Tilborg, D., van der Meel, R., Grisoni, F. & Albertazzi, L. Machine learning-guided high throughput nanoparticle design. Digit. Discov. 3, 1280–1291 (2024).

    Google Scholar 

  257. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Google Scholar 

  258. Liu, D. et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater. 27, 2298–2304 (2015).

    Google Scholar 

  259. Medina, D. X. et al. Optical barcoding of PLGA for multispectral analysis of nanoparticle fate in vivo. J. Control. Rel. 253, 172–182 (2017).

    Google Scholar 

  260. Willmore, A.-M. A. et al. Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale 8, 9096–9101 (2016).

    Google Scholar 

  261. Lokugamage, M. P., Sago, C. D. & Dahlman, J. E. Testing thousands of nanoparticles in vivo using DNA barcodes. Curr. Opin. Biomed. Eng. 7, 1–8 (2018).

    Google Scholar 

  262. Yaari, Z. et al. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7, 13325 (2016).

    Google Scholar 

  263. Dahlman, J. E. et al. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. Proc. Natl Acad. Sci. USA 114, 2060–2065 (2017).

    Google Scholar 

  264. Huayamares, S. G. et al. High-throughput screens identify a lipid nanoparticle that preferentially delivers mRNA to human tumors in vivo. J. Control. Rel. 357, 394–403 (2023).

    Google Scholar 

  265. Xue, L. et al. High-throughput barcoding of nanoparticles identifies cationic, degradable lipid-like materials for mRNA delivery to the lungs in female preclinical models. Nat. Commun. 15, 1884 (2024).

    Google Scholar 

  266. Xu, Y. et al. AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery. Nat. Commun. 15, 6305 (2024).

    Google Scholar 

  267. Lin, Z. et al. Predicting nanoparticle delivery to tumors using machine learning and artificial intelligence approaches. Int. J. Nanomed. 17, 1365–1379 (2022).

    Google Scholar 

  268. Ban, Z. et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proc. Natl Acad. Sci. USA 117, 10492–10499 (2020). This paper utilized machine learning models to predict protein corona compositions and cellular recognition patterns based on nanoparticle features, most notably surface chemistry.

    Google Scholar 

  269. Boehnke, N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022). This study screened a library of nanoparticles varying in core and surface chemistry, in 488 pooled cancer cell lines, to identify genomic biomarkers associated with nanoparticle uptake.

    Google Scholar 

  270. Kibria, M. R. et al. Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: a machine learning-based solution. Sci. Rep. 13, 547 (2023).

    Google Scholar 

  271. Vora, L. K. et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15, 1916 (2023).

    Google Scholar 

  272. Nevone, A. et al. SMaRT M-Seq: an optimized step-by-step protocol for M protein sequencing in monoclonal gammopathies. Biol. Methods Protoc. 9, bpae074 (2024).

    Google Scholar 

  273. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Google Scholar 

  274. Shi, J. P. et al. Construction and validation of transcription-factor-based prognostic signature for TACE non-response and characterization of tumor microenvironment infiltration in hepatocellular carcinoma. Oncol. Lett. 29, 42 (2025).

    Google Scholar 

  275. You, M. Y. et al. HIF2A mediates lineage transition to aggressive phenotype of cancer-associated fibroblasts in lung cancer brain metastasis. Oncoimmunology 13, 2356942 (2024).

    Google Scholar 

  276. Cilento, M. A., Sweeney, C. J. & Butler, L. M. Spatial transcriptomics in cancer research and potential clinical impact: a narrative review. J. Cancer Res. Clin. Oncol. 150, 296 (2024).

    Google Scholar 

  277. Bollhagen, A. & Bodenmiller, B. Highly multiplexed tissue imaging in precision oncology and translational cancer research. Cancer Discov. 14, 2071–2088 (2024).

    Google Scholar 

  278. Gulati, G. S., D’Silva, J. P., Liu, Y. H., Wang, L. H. & Newman, A. M. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat. Rev. Mol. Cell Biol. 26, 11–31 (2025).

    Google Scholar 

  279. Kurma, K., Eslami-S, Z., Alix-Panabieres, C. & Cayrefourcq, L. Liquid biopsy: paving a new avenue for cancer research. Cell Adhes. Migr. 18, 1–26 (2024).

    Google Scholar 

  280. Ge, Q., Zhang, Z. Y., Li, S. N., Ma, J. Q. & Zhao, Z. Liquid biopsy: comprehensive overview of circulating tumor DNA (review). Oncol. Lett. 28, 548 (2024).

    Google Scholar 

  281. Yao, J. et al. Predictive biomarkers for immune checkpoint inhibitors therapy in lung cancer. Hum. Vaccines Immunother. 20, 2406063 (2024).

    Google Scholar 

  282. Sykes, E. A. et al. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proc. Natl Acad. Sci. USA 113, E1142–E1151 (2016). This work demonstrates that the physical characteristics of the tumour impacts the accumulation of nanoparticles of varying size and surface modification, highlighting the consideration of tumour pathophysiology to guide nanomedicine design.

    Google Scholar 

  283. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03774680 (2019).

  284. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02740985 (2023).

  285. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06589401 (2024).

  286. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03465618 (2025).

  287. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04240639 (2023).

  288. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00920023 (2017).

  289. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04784221 (2023).

  290. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04899908 (2024).

  291. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02766699 (2019).

  292. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06234098 (2025).

  293. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01696084 (2020).

  294. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04083235 (2025).

  295. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03678883 (2024).

  296. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06389591 (2025).

  297. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04534205 (2025).

  298. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05497453 (2025).

  299. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01593488 (2023).

  300. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01645839 (2019).

  301. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00945724 (2024).

  302. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02393157 (2023).

  303. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00249990 (2010).

  304. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00102531 (2017).

  305. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05739981 (2025).

  306. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05285358 (2025).

  307. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04858009 (2024).

  308. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00666991 (2014).

  309. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00708864 (2014).

  310. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02106598 (2025).

  311. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04505267 (2024).

  312. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04862455 (2024).

  313. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06048367 (2023).

  314. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04314895 (2023).

  315. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03739931 (2025).

  316. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06249048 (2025).

  317. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03946800 (2024).

  318. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03101358 (2021).

  319. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04138342 (2019).

  320. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06169072 (2024).

  321. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03827967 (2023).

  322. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04951245 (2022).

  323. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03606967 (2025).

  324. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05232851 (2024).

  325. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT01507103 (2017).

  326. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00291473 (2009).

  327. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05198752 (2022).

  328. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03897881 (2025).

  329. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06077760 (2025).

  330. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05533697 (2025).

  331. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03480152 (2020).

  332. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02009332 (2021).

  333. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05519241 (2024).

  334. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06173349 (2024).

  335. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04264143 (2023).

  336. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06468605 (2025).

  337. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02022644 (2023).

  338. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05864534 (2025).

  339. Chenthamara, D. et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 23, 20 (2019).

    Google Scholar 

  340. Kim, K. S., Na, K. & Bae, Y. H. Nanoparticle oral absorption and its clinical translational potential. J. Control. Rel. 360, 149–162 (2023).

    Google Scholar 

  341. Ruiz, M. E. & Scioli Montoto, S. in ADME Processes in Pharmaceutical Sciences: Dosage, Design, and Pharmacotherapy Success (eds Talevi, A. & Quiroga, P. A. M.) 97–133 (Springer, 2018).

  342. Fowler, M. J. et al. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 165-166, 77–95 (2020).

    Google Scholar 

  343. Koo, J., Lim, C. & Oh, K. T. Recent advances in intranasal administration for brain-targeting delivery: a comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations. Int. J. Nanomed. 19, 1767–1807 (2024).

    Google Scholar 

  344. Sharma, M. in Applications of Targeted Nano Drugs and Delivery Systems (eds Mohapatra, S. S. et al.) 499–550 (Elsevier, 2019).

  345. Bruinsmann, F. A. et al. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: preclinical and clinical trials. Molecules 24, 4312 (2019).

    Google Scholar 

  346. Morales, D. E. & Mousa, S. Intranasal delivery in glioblastoma treatment: prospective molecular treatment modalities. Heliyon 8, e09517 (2022).

    Google Scholar 

  347. Miele, E., Spinelli, G. P., Miele, E., Tomao, F. & Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 4, 99–105 (2009).

    Google Scholar 

  348. Hofstraat, S. R. J. et al. Nature-inspired platform nanotechnology for RNA delivery to myeloid cells and their bone marrow progenitors. Nat. Nanotechnol. 20, 532–542 (2025).

    Google Scholar 

  349. Barberio, A. E. et al. Cancer cell coating nanoparticles for optimal tumor-specific cytokine delivery. ACS Nano 14, 11238–11253 (2020).

    Google Scholar 

  350. Paulino da Silva Filho, O. et al. A comparison of acyl-moieties for noncovalent functionalization of PLGA and PEG–PLGA nanoparticles with a cell-penetrating peptide. RSC Adv. 11, 36116–36124 (2021).

    Google Scholar 

  351. Chen, W.-H. et al. Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117, 54–65 (2017).

    Google Scholar 

  352. Men, W. et al. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv. 27, 180–190 (2020).

    Google Scholar 

  353. Zhao, J. et al. Hyaluronic acid layer-by-layer (LbL) nanoparticles for synergistic chemo-phototherapy. Pharm. Res. 35, 196 (2018).

    Google Scholar 

  354. Liu, R., Xiao, W., Hu, C., Xie, R. & Gao, H. Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control. Rel. 278, 127–139 (2018).

    Google Scholar 

  355. Wang, T., Hou, J., Su, C., Zhao, L. & Shi, Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J. Nanobiotechnol. 15, 7 (2017).

    Google Scholar 

  356. Ramasamy, T. et al. Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr. Polym. 102, 653–661 (2014).

    Google Scholar 

  357. Haddadi, A., Hamdy, S., Ghotbi, Z., Samuel, J. & Lavasanifar, A. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan. Nanotechnology 25, 355101 (2014).

    Google Scholar 

  358. Siddharth, S., Nayak, A., Nayak, D., Bindhani, B. K. & Kundu, C. N. Chitosan-dextran sulfate coated doxorubicin loaded PLGA-PVA-nanoparticles caused apoptosis in doxorubicin resistance breast cancer cells through induction of DNA damage. Sci. Rep. 7, 2143 (2017).

    Google Scholar 

  359. Wang, F., Li, J., Tang, X., Huang, K. & Chen, L. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf. B Biointerfaces 190, 110925 (2020).

    Google Scholar 

  360. Su, Y., Yang, F., Chen, L. & Cheung, P. C. K. Mushroom carboxymethylated β-d-glucan functions as a macrophage-targeting carrier for iron oxide nanoparticles and an inducer of proinflammatory macrophage polarization for immunotherapy. J. Agric. Food Chem. 70, 7110–7121 (2022).

    Google Scholar 

  361. Singh, P. K. et al. 1,3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr. Polym. 180, 365–375 (2018).

    Google Scholar 

  362. Li, X. et al. Stable and biocompatible mushroom β-glucan modified gold nanorods for cancer photothermal therapy. J. Agric. Food Chem. 65, 9529–9536 (2017).

    Google Scholar 

  363. Wu, H. et al. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem. Eng. J. 349, 129–145 (2018).

    Google Scholar 

  364. Chai, F. et al. Doxorubicin-loaded poly(lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications. Int. J. Nanomed. 12, 1791–1802 (2017).

    Google Scholar 

  365. Yuk, S. H. et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules 12, 2335–2343 (2011).

    Google Scholar 

  366. Manivasagan, P., Bharathiraja, S., Bui, N. Q., Lim, I. G. & Oh, J. Paclitaxel-loaded chitosan oligosaccharide-stabilized gold nanoparticles as novel agents for drug delivery and photoacoustic imaging of cancer cells. Int. J. Pharm. 511, 367–379 (2016).

    Google Scholar 

  367. Ma, H.-l, Qi, X.-r, Maitani, Y. & Nagai, T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. Int. J. Pharm. 333, 177–186 (2007).

    Google Scholar 

  368. Ghaffarlou, M. et al. Photothermal and radiotherapy with alginate-coated gold nanoparticles for breast cancer treatment. Sci. Rep. 14, 13299 (2024).

    Google Scholar 

  369. Zhou, J. et al. Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and folic acid binding to achieve selective cell targeting. J. Colloid Interface Sci. 345, 241–247 (2010).

    Google Scholar 

  370. Boyle, W. S., Senger, K., Tolar, J. & Reineke, T. M. Heparin enhances transfection in concert with a trehalose-based polycation with challenging cell types. Biomacromolecules 18, 56–67 (2017).

    Google Scholar 

  371. Delechiave, G. et al. Layer-by-layer assembly of polymeric nanoparticles with heparin-RBD Complexes as an adjuvant for SARS-CoV-2 protein-based vaccines. ACS Appl. Nano Mater. 7, 4068–4077 (2024).

    Google Scholar 

  372. Yue, L. et al. Gold nanorods with a noncovalently tailorable surface for multi-modality image-guided chemo-photothermal cancer therapy. Chem. Commun. 55, 13506–13509 (2019).

    Google Scholar 

  373. Yue, L., Sun, C., Kwong, C. H. T. & Wang, R. Cucurbit[7]uril-functionalized magnetic nanoparticles for imaging-guided cancer therapy. J. Mater. Chem. B 8, 2749–2753 (2020).

    Google Scholar 

  374. Zheng, C. et al. In situ modification of the tumor cell surface with immunomodulating nanoparticles for effective suppression of tumor growth in mice. Adv. Mater. 31, 1902542 (2019).

    Google Scholar 

  375. Yoo, M. K. et al. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. BioMed. Res. Int. 2007, 094740 (2007).

    Google Scholar 

  376. Liu, G. et al. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv. Mater. 31, 1900795 (2019).

    Google Scholar 

  377. Zhang, L. et al. Erythrocyte membrane cloaked metal-organic framework nanoparticle as biomimetic nanoreactor for starvation-activated colon cancer therapy. ACS Nano 12, 10201–10211 (2018).

    Google Scholar 

  378. Nam, J. et al. Engineered polysaccharides for controlling innate and adaptive immune responses. Nat. Rev. Bioeng. 2, 733–751 (2024).

    Google Scholar 

  379. Murphy, E. J. et al. Polysaccharides-naturally occurring immune modulators. Polymers 15, 2373 (2023).

    Google Scholar 

  380. Yang, F. & Cheung, P. C. K. Fungal β-glucan-based nanotherapeutics: from fabrication to application. J. Fungi 9, 475 (2023).

    Google Scholar 

Download references