Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma

human-ocular-fluid-outflow-on-chip-reveals-trabecular-meshwork-mediated-schlemm’s-canal-endothelial-dysfunction-in-steroid-induced-glaucoma
Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma
  • Weinreb, R. N., Aung, T. & Medeiros, F. A. The pathophysiology and treatment of glaucoma: a review. JAMA 311, 1901–1911 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Torrejon, K. Y. et al. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol. Bioeng. 110, 3205–3218 (2013).

    CAS  PubMed  Google Scholar 

  • Torrejon, K. Y. et al. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci. Rep. 6, 38319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchemi, M. et al. Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma. Toxicol. In Vitro 41, 21–29 (2017).

    CAS  PubMed  Google Scholar 

  • Osmond, M., Bernier, S. M., Pantcheva, M. B. & Krebs, M. D. Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol. Bioeng. 114, 915–923 (2017).

    CAS  PubMed  Google Scholar 

  • Sacca, S. C. et al. An advanced in vitro model to assess glaucoma onset. ALTEX 37, 265–274 (2020).

    PubMed  Google Scholar 

  • Waduthanthri, K. D., He, Y., Montemagno, C. & Cetinel, S. An injectable peptide hydrogel for reconstruction of the human trabecular meshwork. Acta Biomater. 100, 244–254 (2019).

    CAS  PubMed  Google Scholar 

  • Tirendi, S. et al. A 3D model of human trabecular meshwork for the research study of glaucoma. Front. Neurol. 11, 591776 (2020).

    PubMed  PubMed Central  Google Scholar 

  • Bikuna-Izagirre, M. et al. Nanofibrous PCL-based human trabecular meshwork for aqueous humor outflow studies. ACS Biomater. Sci. Eng. 9, 6333–6344 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Exp. Eye Res. 205, 108472 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dautriche, C. N. et al. A biomimetic Schlemm’s canal inner wall: a model to study outflow physiology, glaucoma pathology and high-throughput drug screening. Biomaterials 65, 86–92 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrigi, R. M., Simon, D., Reed, A., Stamer, W. D. & Overby, D. R. A model of giant vacuole dynamics in human Schlemm’s canal endothelial cells. Exp. Eye Res. 92, 57–66 (2011).

    CAS  PubMed  Google Scholar 

  • Wheeler, E. L. et al. Building an organ-on-chip model of the inner wall endothelium of Schlemm’s canal. Invest. Ophth. Vis. Sci. 64, 3490 (2023).

  • Singh, A. et al. Glaucomatous trabecular meshwork cells induce Schlemm’s canal cell pathobiology in a biomimetic 3D ECM hydrogel co-culture model. Invest. Ophth. Vis. Sci. 64, 5077 (2023).

  • Keller, K. E. et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp. Eye Res. 171, 164–173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aspelund, A. et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truong, T. N., Li, H., Hong, Y. K. & Chen, L. Novel characterization and live imaging of Schlemm’s canal expressing Prox-1. PLoS ONE 9, e98245 (2014).

    PubMed  PubMed Central  Google Scholar 

  • Park, D. Y. et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J. Clin. Invest. 124, 3960–3974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, K. E., Bradley, J. M., Vranka, J. A. & Acott, T. S. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest. Ophthalmol. Vis. Sci. 52, 5049–5057 (2011).

    PubMed  PubMed Central  Google Scholar 

  • Thomson, B. R. et al. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat. Commun. 12, 6072 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, X. et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS ONE 11, e0145824 (2016).

    PubMed  PubMed Central  Google Scholar 

  • Lewczuk, K., Jablonska, J., Konopinska, J., Mariak, Z. & Rekas, M. Schlemm’s canal: the outflow ‘vessel’. Acta Ophthalmol. 100, e881–e890 (2022).

    PubMed  Google Scholar 

  • Wang, W., Qian, X., Song, H., Zhang, M. & Liu, Z. Fluid and structure coupling analysis of the interaction between aqueous humor and iris. Biomed. Eng. Online 15, 569–586 (2016).

    Google Scholar 

  • Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    CAS  PubMed  Google Scholar 

  • Oikawa, K. et al. Aqueous humor TGF-β2 and its association with intraocular pressure in a naturally occurring large animal model of glaucoma. Invest. Ophthalmol. Vis. Sci. 64, 18 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tellios, N. et al. TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci. Rep. 7, 812 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Patel, G. C. et al. Dexamethasone-induced ocular hypertension in mice: effects of myocilin and route of administration. Am. J. Pathol. 187, 713–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S. P. et al. Distinct fibroblast subsets regulate lacteal integrity through YAP/TAZ-induced VEGF-C in intestinal villi. Nat. Commun. 11, 4102 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jannaway, M. et al. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep. 42, 112777 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J. Clin. Invest. 127, 3877–3896 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Hase, K. et al. Expression of vascular endothelial growth factor-C in the trabecular meshwork of patients with neovascular glaucoma and primary open-angle glaucoma. J. Clin. Med. https://doi.org/10.3390/jcm10132977 (2021).

  • Igarashi, N. et al. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci. Rep. 11, 1408 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson, B. R. et al. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans. J. Clin. Invest. 127, 4421–4436 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Du, J., Thomson, B. R., Onay, T. & Quaggin, S. E. Endothelial tyrosine kinase Tie1 is required for normal Schlemm’s canal development-brief report. Arterioscler. Thromb. Vasc. Biol. 42, 348–351 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ujiie, N. et al. Differential roles of FOXC2 in the trabecular meshwork and Schlemm’s canal in glaucomatous pathology. Life Sci. Alliance https://doi.org/10.26508/lsa.202201721 (2023).

  • Yan, X. et al. VIP induces changes in the F-/G-actin ratio of Schlemm’s canal endothelium via LRRK2 transcriptional regulation. Invest. Ophthalmol. Vis. Sci. 61, 45 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe, R. Y. et al. Can psychologic stress elevate intraocular pressure in healthy individuals? Ophthalmol. Glaucoma 3, 426–433 (2020).

    PubMed  Google Scholar 

  • Choi, D. et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J. Clin. Invest. 127, 1225–1240 (2017).

    PubMed  PubMed Central  Google Scholar 

  • Stamer, W. D., Roberts, B. C., Howell, D. N. & Epstein, D. L. Isolation, culture, and characterization of endothelial cells from Schlemm’s canal. Invest. Ophthalmol. Vis. Sci. 39, 1804–1812 (1998).

    CAS  PubMed  Google Scholar 

  • Burke, A. G., Zhou, W., O’Brien, E. T., Roberts, B. C. & Stamer, W. D. Effect of hydrostatic pressure gradients and Na2EDTA on permeability of human Schlemm’s canal cell monolayers. Curr. Eye Res. 28, 391–398 (2004).

    CAS  PubMed  Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  • Thomson, B. R. & Quaggin, S. E. Morphological analysis of Schlemm’s canal in mice. Methods Mol. Biol. 1846, 153–160 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy, P. S. et al. siRNA targeting Schlemm’s canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Mol. Ther. Methods Clin. Dev. 20, 86–94 (2021).

    CAS  PubMed  Google Scholar 

  • Bogner, B. et al. Capsid mutated adeno-associated virus delivered to the anterior chamber results in efficient transduction of trabecular meshwork in mouse and rat. PLoS ONE 10, e0128759 (2015).

    PubMed  PubMed Central  Google Scholar