Weinreb, R. N., Aung, T. & Medeiros, F. A. The pathophysiology and treatment of glaucoma: a review. JAMA 311, 1901–1911 (2014).
Torrejon, K. Y. et al. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol. Bioeng. 110, 3205–3218 (2013).
Torrejon, K. Y. et al. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci. Rep. 6, 38319 (2016).
Bouchemi, M. et al. Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma. Toxicol. In Vitro 41, 21–29 (2017).
Osmond, M., Bernier, S. M., Pantcheva, M. B. & Krebs, M. D. Collagen and collagen-chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol. Bioeng. 114, 915–923 (2017).
Sacca, S. C. et al. An advanced in vitro model to assess glaucoma onset. ALTEX 37, 265–274 (2020).
Waduthanthri, K. D., He, Y., Montemagno, C. & Cetinel, S. An injectable peptide hydrogel for reconstruction of the human trabecular meshwork. Acta Biomater. 100, 244–254 (2019).
Tirendi, S. et al. A 3D model of human trabecular meshwork for the research study of glaucoma. Front. Neurol. 11, 591776 (2020).
Bikuna-Izagirre, M. et al. Nanofibrous PCL-based human trabecular meshwork for aqueous humor outflow studies. ACS Biomater. Sci. Eng. 9, 6333–6344 (2023).
Li, H. et al. A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Exp. Eye Res. 205, 108472 (2021).
Dautriche, C. N. et al. A biomimetic Schlemm’s canal inner wall: a model to study outflow physiology, glaucoma pathology and high-throughput drug screening. Biomaterials 65, 86–92 (2015).
Pedrigi, R. M., Simon, D., Reed, A., Stamer, W. D. & Overby, D. R. A model of giant vacuole dynamics in human Schlemm’s canal endothelial cells. Exp. Eye Res. 92, 57–66 (2011).
Wheeler, E. L. et al. Building an organ-on-chip model of the inner wall endothelium of Schlemm’s canal. Invest. Ophth. Vis. Sci. 64, 3490 (2023).
Singh, A. et al. Glaucomatous trabecular meshwork cells induce Schlemm’s canal cell pathobiology in a biomimetic 3D ECM hydrogel co-culture model. Invest. Ophth. Vis. Sci. 64, 5077 (2023).
Keller, K. E. et al. Consensus recommendations for trabecular meshwork cell isolation, characterization and culture. Exp. Eye Res. 171, 164–173 (2018).
Aspelund, A. et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J. Clin. Invest. 124, 3975–3986 (2014).
Truong, T. N., Li, H., Hong, Y. K. & Chen, L. Novel characterization and live imaging of Schlemm’s canal expressing Prox-1. PLoS ONE 9, e98245 (2014).
Park, D. Y. et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J. Clin. Invest. 124, 3960–3974 (2014).
Keller, K. E., Bradley, J. M., Vranka, J. A. & Acott, T. S. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest. Ophthalmol. Vis. Sci. 52, 5049–5057 (2011).
Thomson, B. R. et al. Cellular crosstalk regulates the aqueous humor outflow pathway and provides new targets for glaucoma therapies. Nat. Commun. 12, 6072 (2021).
Yan, X. et al. Schlemm’s canal and trabecular meshwork in eyes with primary open angle glaucoma: a comparative study using high-frequency ultrasound biomicroscopy. PLoS ONE 11, e0145824 (2016).
Lewczuk, K., Jablonska, J., Konopinska, J., Mariak, Z. & Rekas, M. Schlemm’s canal: the outflow ‘vessel’. Acta Ophthalmol. 100, e881–e890 (2022).
Wang, W., Qian, X., Song, H., Zhang, M. & Liu, Z. Fluid and structure coupling analysis of the interaction between aqueous humor and iris. Biomed. Eng. Online 15, 569–586 (2016).
Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).
Oikawa, K. et al. Aqueous humor TGF-β2 and its association with intraocular pressure in a naturally occurring large animal model of glaucoma. Invest. Ophthalmol. Vis. Sci. 64, 18 (2023).
Tellios, N. et al. TGF-β induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci. Rep. 7, 812 (2017).
Patel, G. C. et al. Dexamethasone-induced ocular hypertension in mice: effects of myocilin and route of administration. Am. J. Pathol. 187, 713–723 (2017).
Hong, S. P. et al. Distinct fibroblast subsets regulate lacteal integrity through YAP/TAZ-induced VEGF-C in intestinal villi. Nat. Commun. 11, 4102 (2020).
Jannaway, M. et al. VEGFR3 is required for button junction formation in lymphatic vessels. Cell Rep. 42, 112777 (2023).
Kim, J. et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm’s canal integrity and induces glaucoma. J. Clin. Invest. 127, 3877–3896 (2017).
Hase, K. et al. Expression of vascular endothelial growth factor-C in the trabecular meshwork of patients with neovascular glaucoma and primary open-angle glaucoma. J. Clin. Med. https://doi.org/10.3390/jcm10132977 (2021).
Igarashi, N. et al. Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes. Sci. Rep. 11, 1408 (2021).
Thomson, B. R. et al. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans. J. Clin. Invest. 127, 4421–4436 (2017).
Du, J., Thomson, B. R., Onay, T. & Quaggin, S. E. Endothelial tyrosine kinase Tie1 is required for normal Schlemm’s canal development-brief report. Arterioscler. Thromb. Vasc. Biol. 42, 348–351 (2022).
Ujiie, N. et al. Differential roles of FOXC2 in the trabecular meshwork and Schlemm’s canal in glaucomatous pathology. Life Sci. Alliance https://doi.org/10.26508/lsa.202201721 (2023).
Yan, X. et al. VIP induces changes in the F-/G-actin ratio of Schlemm’s canal endothelium via LRRK2 transcriptional regulation. Invest. Ophthalmol. Vis. Sci. 61, 45 (2020).
Abe, R. Y. et al. Can psychologic stress elevate intraocular pressure in healthy individuals? Ophthalmol. Glaucoma 3, 426–433 (2020).
Choi, D. et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting. J. Clin. Invest. 127, 1225–1240 (2017).
Stamer, W. D., Roberts, B. C., Howell, D. N. & Epstein, D. L. Isolation, culture, and characterization of endothelial cells from Schlemm’s canal. Invest. Ophthalmol. Vis. Sci. 39, 1804–1812 (1998).
Burke, A. G., Zhou, W., O’Brien, E. T., Roberts, B. C. & Stamer, W. D. Effect of hydrostatic pressure gradients and Na2EDTA on permeability of human Schlemm’s canal cell monolayers. Curr. Eye Res. 28, 391–398 (2004).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Thomson, B. R. & Quaggin, S. E. Morphological analysis of Schlemm’s canal in mice. Methods Mol. Biol. 1846, 153–160 (2018).
Cassidy, P. S. et al. siRNA targeting Schlemm’s canal endothelial tight junctions enhances outflow facility and reduces IOP in a steroid-induced OHT rodent model. Mol. Ther. Methods Clin. Dev. 20, 86–94 (2021).
Bogner, B. et al. Capsid mutated adeno-associated virus delivered to the anterior chamber results in efficient transduction of trabecular meshwork in mouse and rat. PLoS ONE 10, e0128759 (2015).
