Nanotechnology for CAR T cells and tumour-infiltrating lymphocyte therapies

nanotechnology-for-car-t-cells-and-tumour-infiltrating-lymphocyte-therapies
Nanotechnology for CAR T cells and tumour-infiltrating lymphocyte therapies
  • Emens, L. A. et al. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 12, e009063 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkins, M., Kunkel, L., Sznol, M. & Rosenberg, S. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am. 6, 11–14 (2000).

    Google Scholar 

  • Yang, J. C. et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol. 21, 3127–3132 (2003).

    Article  CAS  PubMed  Google Scholar 

  • He, X. & Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30, 660–669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853–858 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi, R., Maier, H. J., Zhang, J. & Lim, S. Kymriah® (tisagenlecleucel)–An overview of the clinical development journey of the first approved CAR-T therapy. Hum. Vaccin. Immunother. 19, 2210046 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Julve, M., Lythgoe, M. P., Larkin, J. & Furness, A. J. S. Lifileucel: the first cellular therapy approved for solid tumours. Trends Cancer 10, 475–477 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Monberg, T. J., Borch, T. H., Svane, I. M. & Donia, M. TIL therapy: facts and hopes. Clin. Cancer Res. 29, 3275–3283 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Sperling, A. S., Smith, E. L. & Mooney, D. J. Optimizing the manufacturing and antitumour response of CAR T therapy. Nat. Rev. Bioeng. 1, 271–285 (2023).

    Article  CAS  Google Scholar 

  • Matsueda, S., Chen, L., Li, H., Yao, H. & Yu, F. Recent clinical researches and technological development in TIL therapy. Cancer Immunol. Immunother. 73, 232 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyun, J., Kim, S. J., Cho, S. D. & Kim, H. W. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 297, 122101 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Wang, F. Y., Qiu, T., Ling, Y., Yang, Y. & Zhou, Y. Physical and chemical cues at the nano–bio interface for immunomodulation. Angew. Chem. 61, e202209499 (2022).

    Article  CAS  Google Scholar 

  • Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FDA approves obecabtagene autoleucel for adults with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. US Food and Drug Administration https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-obecabtagene-autoleucel-adults-relapsed-or-refractory-b-cell-precursor-acute (2024).

  • Juan, M., Delgado, J., Calvo, G., Trias, E. & Urbano-Ispizua, Á. Is hospital exemption an alternative or a bridge to european medicines agency for developing academic chimeric antigen receptor T-cell in Europe? Our experience with ARI-0001. Hum. Gene Ther. 32, 1004–1007 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Damodar, S. et al. Early results from a phase-2 study of varnimcabtagene autoleucel (IMN-003A), a first-in-India industry CD19-directed CAR-T cell therapy with fractionated infusions for patients with relapsed and/or refractory B cell malignancies (IMAGINE study). Blood 140, 10343–10344 (2022).

    Article  Google Scholar 

  • Oliver-Caldes, A. et al. Biomarkers of efficacy and safety of the academic BCMA-CART ARI0002h for the treatment of refractory multiple myeloma. Clin. Cancer Res. 30, 2085–2096 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Nie, T. Talicabtagene autoleucel: first approval. Mol. Diagn. Ther. 28, 495–499 (2024).

    Article  PubMed  Google Scholar 

  • Therapeutics announces NMPA approval of the supplemental biological license application for Carteyva in adult patients with relapsed or refractory mantle cell lymphoma. JW Therapeutics https://www.jwtherapeutics.com/en/media/press-release/20240827/ (2024).

  • Wang, Y. et al. Inaticabtagene autoleucel in adult relapsed or refractory B-cell acute lymphoblastic leukemia. Blood Adv. 9, 836–843 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Saez-Ibañez, A. R. et al. The changing landscape of cancer cell therapies: clinical trials and real-world data. Nat. Rev. Drug Discov. 23, 736–737 (2024).

    Article  PubMed  Google Scholar 

  • Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Diorio, C., Teachey, D. T. & Grupp, S. A. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat. Rev. Clin. Oncol. 22, 10–27 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Hopewell, E. L., Cox, C., Pilon-Thomas, S. & Kelley, L. L. Tumor infiltrating lymphocytes streamlining a complex manufacturing process. Cytotherapy 21, 307–314 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Flugel, C. L. et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat. Rev. Clin. Oncol. 20, 49–62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Albelda, S. M. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat. Rev. Clin. Oncol. 21, 47–66 (2023).

    Article  PubMed  Google Scholar 

  • Zhao, Y. et al. Tumor infiltrating lymphocyte (TIL) therapy for solid tumor treatment: progressions and challenges. Cancers 14, 4160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madkour, L. H. in Nanoelectronic Materials: Fundamentals and Applications (ed. Madkour, L. H.) 1–47 (Springer, 2019).

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Joyce, P. et al. A translational framework to DELIVER nanomedicines to the clinic. Nat. Nanotechnol. 19, 1597–1611 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update post COVID-19 vaccines. Bioeng. Transl. Med. 6, e10246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, F., Guo, Z., Ho, M. T., Hui, Y. & Zhao, C. X. Particle-based artificial antigen-presenting cell systems for T cell activation in adoptive T cell therapy. ACS Nano 18, 8571–8599 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Hu, T., Kumar, A. R. K., Luo, Y. & Tay, A. Automating CAR-T transfection with micro and nano-technologies. Small Methods 8, e2301300 (2024).

    Article  PubMed  Google Scholar 

  • Sunshine, J. C. & Green, J. J. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine 8, 1173–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Dahotre, S. N., Romanov, A. M., Su, F. Y. & Kwong, G. A. Synthetic antigen-presenting cells for adoptive T cell therapy. Adv. Ther. 4, 2100034 (2021).

    Article  CAS  Google Scholar 

  • Ben-Akiva, E. et al. Shape matters: biodegradable anisotropic nanoparticle artificial antigen presenting cells for cancer immunotherapy. Acta Biomater. 160, 187–197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perica, K. et al. Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomedicine 10, 119–129 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Isser, A. et al. Nanoparticle-based modulation of CD4+ T cell effector and helper functions enhances adoptive immunotherapy. Nat. Commun. 13, 6086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, J. et al. Rapid expansion of highly functional antigen-specific T cells from patients with melanoma by nanoscale artificial antigen-presenting cells. Clin. Cancer Res. 26, 3384–3396 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. & Yu, Y. Janus nanoparticles for T cell activation: clustering ligands to enhance stimulation. J. Mater. Chem. B 5, 4410–4415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matic, J., Deeg, J., Scheffold, A., Goldstein, I. & Spatz, J. P. Fine tuning and efficient T cell activation with stimulatory aCD3 nanoarrays. Nano Lett. 13, 5090–5097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guasch, J., Muth, C. A., Diemer, J., Riahinezhad, H. & Spatz, J. P. Integrin-assisted T-cell activation on nanostructured hydrogels. Nano Lett. 17, 6110–6116 (2017). This work proposes that the nanoscale arrangement of anti-CD3 and integrin-binding ligands can be strategically engineered to modulate T cell activation.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira, A. I. et al. Spatial regulation of T-cell signaling by programmed death-ligand 1 on wireframe DNA origami flat sheets. ACS Nano 15, 3441–3452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmeier, J. et al. DNA origami demonstrate the unique stimulatory power of single pMHCs as T-cell antigens. Biophys. J. 120, 330a (2021).

    Article  Google Scholar 

  • Cheung, A. S., Zhang, D. K. Y., Koshy, S. T. & Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36, 160–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadel, T. R. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Jie, J., Mao, D., Cao, J., Feng, P. & Yang, P. Customized multifunctional peptide hydrogel scaffolds for CAR-T-cell rapid proliferation and solid tumor immunotherapy. ACS Appl. Mater. Interfaces 14, 37514–37527 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lambert, L. H. et al. Improving T cell expansion with a soft touch. Nano Lett. 17, 821–826 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal, S. et al. Polymer-based synthetic dendritic cells for tailoring robust and multifunctional T cell responses. ACS Chem. Biol. 10, 485–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Aramesh, M. et al. Nanoconfinement of microvilli alters gene expression and boosts T cell activation. Proc. Natl Acad. Sci. USA 118, e2107535118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhingardive, V. et al. Antibody-functionalized nanowires: a tuner for the activation of T cells. Nano Lett. 21, 4241–4248 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Esmaeili, F. et al. Spiky gold nanoparticles, a nanoscale approach to enhanced ex vivo T-cell activation. ACS Nano 18, 21554–21564 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Lei, K., Kurum, A. & Tang, L. Mechanical immunoengineering of T cells for therapeutic applications. Acc. Chem. Res. 53, 2777–2790 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Perica, K. et al. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 8, 2252–2260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z. et al. Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat. Methods 13, 143–146 (2016).

    Article  PubMed  Google Scholar 

  • Zheng, Y. et al. Optoregulated force application to cellular receptors using molecular motors. Nat. Commun. 12, 3580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, D. et al. Mechanically optimize T cells activation by spiky nanomotors. Front. Bioeng. Biotechnol. 10, 844091 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chada, N. C. & Wilson, J. T. Jump-starting chimeric antigen receptor-T cells to go the extra mile with nanotechnology. Curr. Opin. Biotechnol. 89, 103179 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Belling, J. N. et al. Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proc. Natl Acad. Sci. USA 117, 10976–10982 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sytsma, B. J. et al. Scalable intracellular delivery via microfluidic vortex shedding enhances the function of chimeric antigen receptor T-cells. Sci. Rep. 15, 5749 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Aramesh, M. et al. Enhanced cellular uptake through nanotopography-induced macropinocytosis. Adv. Funct. Mater. 34, 2400487 (2024).

    Article  CAS  Google Scholar 

  • Pan, H. et al. Glycometabolic bioorthogonal chemistry-guided viral transduction for robust human T cell engineering. Adv. Funct. Mater. 29, 1807528 (2019).

    Article  Google Scholar 

  • Chen, Y. et al. Efficient non-viral CAR-T cell generation via silicon-nanotube-mediated transfection. Mater. Today 63, 8–17 (2023).

    Article  Google Scholar 

  • Shokouhi, A. R. et al. Engineering efficient CAR-T cells via electroactive nanoinjection. Adv. Mat. 35, e2304122 (2023).

    Article  Google Scholar 

  • Tay, A. & Melosh, N. Mechanical stimulation after centrifuge-free nano-electroporative transfection is efficient and maintains long-term T cell functionalities. Small 17, 2103198 (2021).

    Article  CAS  Google Scholar 

  • Xiong, R. et al. Fast spatial-selective delivery into live cells. J. Control. Release 266, 198–204 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Pinto, I. S., Cordeiro, R. A. & Faneca, H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J. Control. Release 353, 196–215 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Selby, L. I., Cortez-Jugo, C. M., Such, G. K. & Johnston, A. P. R. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. WIREs Nanomed. Nanobiotechnol. 9, e1452 (2017).

    Article  Google Scholar 

  • Olden, B. R., Cheng, Y., Yu, J. L. & Pun, S. H. Cationic polymers for non-viral gene delivery to human T cells. J. Control. Release 282, 140–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prazeres, P. H. D. M. et al. Delivery of plasmid DNA by ionizable lipid nanoparticles to induce CAR expression in T cells. Int. J. Nanomed. 18, 5891–5904 (2023).

    Article  CAS  Google Scholar 

  • Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla, M. S. et al. Branched endosomal disruptor (BEND) lipids mediate delivery of mRNA and CRISPR-Cas9 ribonucleoprotein complex for hepatic gene editing and T cell engineering. Nat. Commun. 16, 996 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzloff, A. E. et al. Antigen presenting cell mimetic lipid nanoparticles for rapid mRNA CAR T cell cancer immunotherapy. Adv. Mater. 36, 2313226 (2024). This publication presents lipid nanoparticles conjugated with anti-CD3 and anti-CD28, and encapsulating CAR mRNA, enabling activation and transfection of primary human T cells in a single step.

    Article  CAS  Google Scholar 

  • Billingsley, M. M. et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano Lett. 22, 533–542 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yee Mon, K. J. et al. Functionalized nanowires for miRNA-mediated therapeutic programming of naïve T cells. Nat. Nanotech. 19, 1190–1202 (2024).

    Article  CAS  Google Scholar 

  • Hamilton, A. G. et al. Ionizable lipid nanoparticles with integrated immune checkpoint inhibition for mRNA CAR T cell engineering. Adv. Healthc. Mater. 12, 2301515 (2023).

    Article  CAS  Google Scholar 

  • Chamberlain, C. A. et al. Highly efficient PD-1-targeted CRISPR-Cas9 for tumor-infiltrating lymphocyte-based adoptive T cell therapy. Mol. Ther. Oncolytics 24, 417–428 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudno, J. N., Maus, M. V. & Hinrichs, C. S. CAR T cells and T-cell therapies for cancer: a translational science review. JAMA 22, 1924–1935 (2024).

    Article  Google Scholar 

  • Wang, L. et al. The dilemmas and possible solutions for CAR-T cell therapy application in solid tumors. Cancer Lett. 591, 216871 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A. Q. et al. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng. 7, 1113–1128 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Yoon, J., Fagan, E., Jeong, M. & Park, J.-H. In situ tumor-infiltrating lymphocyte therapy by local delivery of an mRNA encoding membrane-anchored anti-CD3 single-chain variable fragment. ACS Nano 18, 32401–32420 (2024). This work explores the use of mRNA-loaded lipid nanoparticles in tumours, enabling the in vivo engineering of TAMs and tumour cells to express anti-CD3 and thereby promote in situ engagement of TILs.

    Article  CAS  PubMed  Google Scholar 

  • Stephan, M. T., Moon, J. J., Um, S. H., Bersthteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y. et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 281, 121341 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. et al. Cytokine conjugation to enhance T cell therapy. Proc. Natl Acad. Sci. USA 120, e2213222120 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y. et al. In vivo targeting of adoptively transferred T-cells with antibody- and cytokine-conjugated liposomes. J. Control. Release 172, 426–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, L. et al. Direct in vivo activation of T cells with nanosized immunofilaments inhibits tumor growth and metastasis. ACS Nano 17, 12101–12117 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y. et al. DNA origami–based artificial antigen-presenting cells for adoptive T cell therapy. Sci. Adv. 8, eadd1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, R. A. et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small 11, 1519 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. et al. Enhancing adoptive cell therapy by T cell loading of SHP2 inhibitor nanocrystals before infusion. ACS Nano 16, 10918–10930 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siriwon, N. et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol. Res. 6, 812–824 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z. et al. Nanoengineered CAR-T biohybrids for solid tumor immunotherapy with microenvironment photothermal-remodeling strategy. Small 17, 2007494 (2021).

    Article  CAS  Google Scholar 

  • Zhao, Z. et al. A collagenase nanogel backpack improves CAR-T cell therapy outcomes in pancreatic cancer. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-01924-1 (2025).

    Article  PubMed  Google Scholar 

  • Nie, W. et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell therapy for solid tumors. ACS Nano 13, 1469–1478 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Schmid, D. et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat. Commun. 8, 1747 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, F. et al. Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T-cell therapy in solid malignancies. Cancer Res. 78, 3718–3730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X. et al. Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours. Nat. Nanotechnol. 18, 933–944 (2023). This article presents a mild heat-activated Cas9-based nanodevice that simultaneously disrupts immunosuppression in the tumour microenvironment and the apoptotic resistance of tumour cells, enhancing the infiltration and efficacy of TILs and CAR T cells.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, T. et al. Inhalable nanovesicles loaded with a STING agonist enhance CAR-T cell activity against solid tumors in the lung. Nat. Commun. 16, 262 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • An, J., Guo, R., Liu, M., Hu, H. & Zhang, H. Multi-modal Ca2+ nanogenerator via reversing T cell exhaustion for enhanced chemo-immunotherapy. J. Control. Release 372, 715–727 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Miller, I. C. et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng. 5, 1348–1359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfister, F. et al. Loading of CAR-T cells with magnetic nanoparticles for controlled targeting suppresses inflammatory cytokine release and switches tumor cell death mechanism. MedComm 6, e70039 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, N. et al. In situ PEGylation of CAR T cells alleviates cytokine release syndrome and neurotoxicity. Nat. Mater. 22, 1571–1580 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Short, L., Holt, R. A., Cullis, P. R. & Evgin, L. Direct in vivo CAR T cell engineering. Trends Pharmacol. Sci. 45, 406–418 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, C. et al. Injectable supramolecular hydrogels for in situ programming of CAR-T cells toward solid tumor immunotherapy. Adv. Mater. 36, 2310078 (2024).

    Article  CAS  Google Scholar 

  • Zhou, J. E. et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J. Control. Release 350, 298–307 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020). This study explores mRNA-loaded polymer nanocarriers that programme host T cells to transiently express tumour-specific CARs directly in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, 2304378 (2024).

    Article  CAS  Google Scholar 

  • Álvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells extend survival in a mouse model of lymphoreplete B cell lymphoma. Angew. Chem. Int. Ed. 62, e202310395 (2023).

    Article  Google Scholar 

  • Zhao, G., Zhang, Y., Xu, C. F. & Wang, J. In vivo production of CAR-T cells using virus-mimetic fusogenic nanovesicles. Sci. Bull. 69, 354–366 (2024).

    Article  CAS  Google Scholar 

  • Hamilton, E. et al. 801PRIMETM IL-15 (RPTR-147): preliminary clinical results and biomarker analysis from a first-in-human Phase 1 study of IL-15 loaded peripherally-derived autologous T cell therapy in solid tumor patients. J. Immunother. Cancer 8, A479–A480 (2020).

    Google Scholar 

  • Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seif, M. et al. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci. Transl. Med. 14, eabh1209 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Lidar, M. et al. CD-19 CAR-T cells for polyrefractory rheumatoid arthritis. Ann. Rheum. Dis. 84, 370–372 (2024).

    Article  Google Scholar 

  • Mohammadi, V. et al. Chimeric antigen receptor (CAR)-based cell therapy for type 1 diabetes mellitus (T1DM); current progress and future approaches. Stem. Cell. Rev. Rep. 20, 585–600 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qasim, W. et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 9, eaaj2013 (2017).

    Article  PubMed  Google Scholar 

  • Schaible, P., Bethge, W., Lengerke, C. & Haraszti, R. A. RNA therapeutics for improving CAR T-cell safety and efficacy. Cancer Res. 83, 354–362 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, R. et al. EZH1 repression generates mature iPSC-derived CAR T cells with enhanced antitumor activity. Cell Stem Cell 29, 1181–1196.E6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkouk, A. et al. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J. Immunother. Cancer 9, e003441 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, E. et al. Use of CAR-Transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson, D., Fernandes, R. A., Basham, M., Ogg, G. & Koohy, H. Can we predict T cell specificity with digital biology and machine learning? Nat. Rev. Immunol. 23, 511–521 (2023). This perspective article explores how integrating digital biology with machine learning can enhance the prediction of TCR–antigen specificity, deepening our understanding of antigen immunogenicity and informing the development of CAR T and TIL therapies.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D. K. Y. et al. Enhancing CAR-T cell functionality in a patient-specific manner. Nat. Commun. 14, 506 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, 1194–1200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogatu, A. et al. Meta-analysis informed machine learning: Supporting cytokine storm detection during CAR-T cell Therapy. J. Biomed. Inform. 142, 104367 (2023).

    Article  PubMed  Google Scholar 

  • Arabi, F., Mansouri, V. & Ahmadbeigi, N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 153, 113324 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Moradi, V., Omidkhoda, A. & Ahmadbeigi, N. The paths and challenges of ‘off-the-shelf’ CAR-T cell therapy: an overview of clinical trials. Biomed. Pharmacother. 169, 115888 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer, A. et al. In vivo generation of human CD 19‐ CAR T cells results in B‐cell depletion and signs of cytokine release syndrome. EMBO Mol. Med. 10, e9158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal, S., Weidner, T., Thalheimer, F. B. & Buchholz, C. J. In vivo generated human CAR T cells eradicate tumor cells. Oncoimmunology 8, e1671761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, A. M. et al. Combining T-cell–specific activation and in vivo gene delivery through CD3-targeted lentiviral vectors. Blood Adv. 4, 5702–5715 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolai, C. J. et al. In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand. Blood 144, 977–987 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels, K. R. et al. Preclinical proof of concept for VivoVec, a lentiviral-based platform for in vivo CAR T-cell engineering. J. Immunother. Cancer 11, e006292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Huckaby, J. T. et al. Bispecific binder redirected lentiviral vector enables in vivo engineering of CAR-T cells. J. Immunother. Cancer 9, e002737 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawaz, W. et al. AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J. 11, 119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeffreys, N., Brockman, J. M., Zhai, Y., Ingber, D. E. & Mooney, D. J. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. Appl. Phys. Rev. 11, 011304 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Ma, C., Cai, H. & Chen, W. The CAR T-cell mechanoimmunology at a glance. Adv. Sci. 7, 2002628 (2020).

    Article  CAS  Google Scholar 

  • Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, X., He, L. & Guo, Z. T-cell exhaustion in CAR-T-cell therapy and strategies to overcome it. Immunology 169, 400–411 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Rafiq, S., Hackett, C. S. & Brentjens, R. J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17, 147–167 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Hughes, A. D., Teachey, D. T. & Diorio, C. Riding the storm: managing cytokine-related toxicities in CAR-T cell therapy. Semin. Immunopathol. 46, 1–19 (2024).

    Article  Google Scholar