Labeling, isolation and characterization of cell-type-specific exosomes derived from mouse skin tissue

labeling,-isolation-and-characterization-of-cell-type-specific-exosomes-derived-from-mouse-skin-tissue
Labeling, isolation and characterization of cell-type-specific exosomes derived from mouse skin tissue
  • Zappulli, V., Friis, K. P., Fitzpatrick, Z., Maguire, C. A. & Breakefield, X. O. Extracellular vesicles and intercellular communication within the nervous system. J. Clin. Invest. 126, 1198–high–1207 (2016).

    Article  Google Scholar 

  • Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Faict, S. et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 8, 105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosseinkhani, B., Kuypers, S., van den Akker, N. M. S., Molin, D. G. M. & Michiels, L. Extracellular vesicles work as a functional inflammatory mediator between vascular endothelial cells and immune cells. Front. Immunol. 9, 1789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J. et al. Extracellular vesicle cross-talk in the bone marrow microenvironment: implications in multiple myeloma. Oncotarget 7, 38927–38945 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, R., Greening, D. W., Zhu, H. J., Takahashi, N. & Simpson, R. J. Extracellular vesicle isolation and characterization: toward clinical application. J. Clin. Invest. 126, 1152–1162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkach, M. & Théry, C. Communication by extracellular vesicles: where we are and where we need to go. Cell 164, 1226–1232 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Visnovitz, T. Extracellular vesicles: biology and therapeutic applications. Int. J. Mol. Sci 25, 13034 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava, A. et al. Progress in extracellular vesicle biology and their application in cancer medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1621 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Yang, Z., Wang, L., Xing, D. & Lin, J. Global research trends in extracellular vesicles based on stem cells from 1991 to 2021: a bibliometric and visualized study. Front. Bioeng. Biotechnol. 10, 956058 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelwick, R. J. R., Webb, A. J., Heliot, A., Segura, C. T. & Freemont, P. S. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. J. Extracell. Biol. 2, e90 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S. et al. Skeletal muscle releases extracellular vesicles with distinct protein and microRNA signatures that function in the muscle microenvironment. PNAS Nexus 1, pgac173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur, A. et al. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein Cell 13, 631–654 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, B. C. et al. Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors. Nanomedicine 15, 2149–2170 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, A., Xuan, Y., Sen, C. K. & Ghatak, S. Standardized reporting of research on exosomes to ensure rigor and reproducibility. Adv. Wound Care 13, 584–599 (2024).

    Article  CAS  Google Scholar 

  • Rankin-Turner, S. et al. A call for the standardised reporting of factors affecting the exogenous loading of extracellular vesicles with therapeutic cargos. Adv. Drug Deliv. Rev. 173, 479–491 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Doyle, L. M. & Wang, M. Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri, R. & LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 367, eaau6977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol 19, 213–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen, D. K., Zhang, Q., Franklin, J. L. & Coffey, R. J. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol 33, 667–681 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Boza, J., Lion, M. & Struman, I. Exploring the RNA landscape of endothelial exosomes. RNA 24, 423–435 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013).

    Article  PubMed  Google Scholar 

  • Janas, T., Janas, M. M., Sapoń, K. & Janas, T. Mechanisms of RNA loading into exosomes. FEBS Lett. 589, 1391–1398 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Creemers, E. E., Tijsen, A. J. & Pinto, Y. M. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease. Circ. Res. 110, 483–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Guduric-Fuchs, J. et al. Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 13, 357 (2012).

    Article  CAS  Google Scholar 

  • Zhang, J. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genom. Proteom. Bioinform. 13, 17–24 (2015).

    Article  CAS  Google Scholar 

  • Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Article  PubMed  Google Scholar 

  • Van Deun, J. et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 3, 24858 (2014).

    Article  Google Scholar 

  • Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. Y. et al. Characterization of exosomes and exosomal RNAs isolated from post-mortem body fluids for molecular forensic diagnosis. Diagnostics 12, 2153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, S. et al. Characterization of urinary exosomes purified with size exclusion chromatography and ultracentrifugation. J. Proteome Res. 19, 2217–2225 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Lai, J. J. et al. Exosome processing and characterization approaches for research and technology development. Adv. Sci. 9, e2103222 (2022).

    Article  Google Scholar 

  • Ekström, K. et al. Characterization of surface markers on extracellular vesicles isolated from lymphatic exudate from patients with breast cancer. BMC Cancer 22, 50 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez, M. I. et al. Technical challenges of working with extracellular vesicles. Nanoscale 10, 881–906 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Willms, E., Cabañas, C., Mäger, I., Wood, M. J. A. & Vader, P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol 9, 738 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, A., Yadav, A., Nandy, A. & Ghatak, S. Insight into the functional dynamics and challenges of exosomes in pharmaceutical innovation and precision medicine. Pharmaceutics 16, 709 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed, K. A. & Xiang, J. Mechanisms of cellular communication through intercellular protein transfer. J. Cell. Mol. Med. 15, 1458–1473 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Yadav, A., Nandy, A., Sharma, A. & Ghatak, S. in Intercellular and Interorganellar Transfer and Communication in Biology and Medicine (eds Kloc, M., Kubiak, J. Z. & Halasa, M.) 249–297 (Springer, 2024).

  • Li, X. et al. Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng. 3, 011503 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadizadeh, N. et al. Extracellular vesicles biogenesis, isolation, manipulation and genetic engineering for potential in vitro and in vivo therapeutics: an overview. Front. Bioeng. Biotechnol. 10, 1019821 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sousa, K. P. et al. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1835 (2023).

    Article  PubMed  Google Scholar 

  • van de Wakker, S. I., Meijers, F. M., Sluijter, J. P. G. & Vader, P. Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacol. Rev. 75, 1043–1061 (2023).

    Article  PubMed  Google Scholar 

  • Allelein, S. et al. Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations. Sci. Rep. 11, 11585 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D. K. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 31, 933–939 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Keerthikumar, S. et al. ExoCarta: a web-based compendium of exosomal cargo. J. Mol. Biol. 428, 688–692 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Andreu, Z. & Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. Immunol. 5, 442–442 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • McAndrews, K. & Kalluri, R. Mechanisms associated with biogenesis of exosomes in cancer. Mol. Cancer 18, 52 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Martin, R., Brandao, B. B., Thomou, T., Altindis, E. & Kahn, C. R. Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Rep. 38, 110277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X. et al. Exosome-mediated crosstalk between keratinocytes and macrophages in cutaneous wound healing. ACS Nano 14, 12732–12748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, A. et al. Mitochondrial bioenergetics of functional wound closure is dependent on macrophage–keratinocyte exosomal crosstalk. ACS Nano 18, 30405–30420 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, B. A. et al. Analysis of keratinocytic exosomes from diabetic and nondiabetic mice by charge detection mass spectrometry. Anal. Chem. 94, 8909–8918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan, Y. et al. Fabrication and use of silicon hollow needle arrays to achieve tissue nanotransfection in mouse tissue in vivo. Nat. Protoc. 16, 5707–5738 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Deun, J., Hendrix, A. & Consortium, E. -T. Is your article EV-TRACKed? J. Extracell. Vesicles 6, 1379835 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Skalnikova, H. K. et al. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes 7, 17 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Monguió-Tortajada, M. et al. Extracellular-vesicle isolation from different biological fluids by size-exclusion chromatography. Curr. Protoc. Stem Cell Biol. 49, e82 (2019).

    Article  PubMed  Google Scholar 

  • Balaj, L. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2, 180 (2011).

    Article  PubMed  Google Scholar 

  • Crescitelli, R., Lässer, C. & Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc. 16, 1548–1580 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Gheinani, A. H. et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep. 8, 3945 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Benmoussa, A., Michel, S., Gilbert, C. & Provost, P. Isolating multiple extracellular vesicles subsets, including exosomes and membrane vesicles, from bovine milk using sodium citrate and differential ultracentrifugation. Bio. Protoc. 10, e3636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, A. A., Shen, H., Spychalski, G., Carpenter, E. L. & Issadore, D. Modeling and optimization of parallelized immunomagnetic nanopore sorting for surface marker specific isolation of extracellular vesicles from complex media. Sci. Rep. 13, 13292 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan, K. et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci. Rep. 10, 1039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlan, C. et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr. Protoc. Cell Biol. 88, e110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J. et al. Recent developments in isolating methods for exosomes. Front. Bioeng. Biotechnol. 10, 1100892 (2022).

    Article  PubMed  Google Scholar 

  • Du, S. et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J. Nanobiotechnol. 21, 231 (2023).

    Article  Google Scholar 

  • Zhang, Q., Jeppesen, D. K., Higginbotham, J. N., Franklin, J. L. & Coffey, R. J. Comprehensive isolation of extracellular vesicles and nanoparticles. Nat. Protoc. 18, 1462–1487 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodolfo, C. & Campello, S. Extracellular vesicles and co.: scaring immune cells in the TME since ever. Front. Immunol. 15, 1451003 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J. et al. Recent advances in microfluidic-based extracellular vesicle analysis. Micromachines 15, 630 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y. et al. Microfluidic technology for the isolation and analysis of exosomes. Micromachines 13, 1571 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bordanaba-Florit, G., Royo, F., Kruglik, S. G. & Falcón-Pérez, J. M. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. 16, 3163–3185 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Tian, F., Liu, C., Deng, J. & Sun, J. Microfluidic separation, detection, and engineering of extracellular vesicles for cancer diagnostics and drug delivery. Acc. Mater. Res. 3, 498–510 (2022).

    Article  CAS  Google Scholar 

  • Gallart-Palau, X., Serra, A. & Sze, S. K. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol. Neurodegener. 11, 41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurwitz, S. N., Olcese, J. M. & Meckes, D. G., Jr. Extraction of extracellular vesicles from whole tissue. J. Vis. Exp. https://doi.org/10.3791/59143 (2019).

  • Hurwitz, S. N. et al. An optimized method for enrichment of whole brain-derived extracellular vesicles reveals insight into neurodegenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. Methods 307, 210–220 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurunathan, S., Kang, M. H., Jeyaraj, M., Qasim, M. & Kim, J. H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 8, 307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeurissen, S. et al. The isolation of morphologically intact and biologically active extracellular vesicles from the secretome of cancer-associated adipose tissue. Cell Adhes. Migr. 11, 196–204 (2017).

    Article  CAS  Google Scholar 

  • Jingushi, K. et al. Extracellular vesicles isolated from human renal cell carcinoma tissues disrupt vascular endothelial cell morphology via azurocidin. Int. J. Cancer 142, 607–617 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Nieuwland, R., Siljander, P. R. M., Falcón-Pérez, J. M. & Witwer, K. W. Reproducibility of extracellular vesicle research. Eur. J. Cell Biol. 101, 151226 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Sanchez, F. G. et al. Microfluidic systems in extracellular vesicles single analysis. A systematic review. Trends Anal. Chem. 159, 116920 (2023).

    Article  CAS  Google Scholar 

  • Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V. & Laktionov, P. P. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed. Res. Int. 2018, 8545347 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guda, P. R. et al. Nanoscopic and functional characterization of keratinocyte-originating exosomes in the wound fluid of non-diabetic and diabetic chronic wound patients. Nano Today 52, 101954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony, A. J. et al. CDMS analysis of intact 19S, 20S, 26S, and 30S proteasomes: evidence for higher-order 20S assemblies at a low pH. Anal. Chem. 95, 12209–12215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani, G. Studies on lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300 (1951).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennox, E. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190–206 (1955).

    Article  CAS  PubMed  Google Scholar 

  • Islas-Flores, I., Peraza-Echeverría, L., Canto-Canché, B. & Rodríguez-García, C. M. Extraction of high-quality, melanin-free RNA from Mycosphaerella fijiensis for cDNA preparation. Mol. Biotechnol. 34, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hánělová, K., Raudenská, M., Masařík, M. & Balvan, J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun. Signal. 22, 25 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastin, G. & Heximer, S. P. Rab family proteins regulate the endosomal trafficking and function of RGS4. J. Biol. Chem. 288, 21836–21849 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Silva, C. et al. High sensitivity detection of extracellular vesicles immune-captured from urine by conventional flow cytometry. Sci. Rep. 9, 2042 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Khushman, M. et al. Exosomal markers (CD63 and CD9) expression pattern using immunohistochemistry in resected malignant and nonmalignant pancreatic specimens. Pancreas 46, 782–788 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, D. et al. Regulation of the function and expression of EpCAM. Biomedicines 12, 1129 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. X. et al. The roles of exosomal proteins: classification, function, and applications. Int. J. Mol. Sci. 24, 3061 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, W. et al. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun. Biol. 3, 114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, Z., Ye, M. & Jin, X. et al. The roles of FLOT1 in human diseases (review). Mol. Med. Rep. 28, 212 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W. et al. ICAM-1-mediated adhesion is a prerequisite for exosome-induced T cell suppression. Dev. Cell 57, 329–343.e327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosquera-Heredia, M. I. et al. Exosomes: potential disease biomarkers and new therapeutic targets. Biomedicines 9, 1061 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghatak, S. Snapgene files, QC files (plasmid sequencing results), and service reports from ABM. Figshare https://doi.org/10.6084/m9.figshare.26169487.v1 (2025).