Activity-based selection for enhanced base editor mutational scanning

activity-based-selection-for-enhanced-base-editor-mutational-scanning
Activity-based selection for enhanced base editor mutational scanning
  • Araya, C. L. & Fowler, D. M. Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol. 29, 435–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, H. & Li, X. Deep mutational scanning: a versatile tool in systematically mapping genotypes to phenotypes. Front. Genet. 14, 1087267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patwardhan, R. P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Findlay, G. M. et al. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562, 217–222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J. et al. Improving prime editing with an endogenous small RNA-binding protein. Nature 628, 639–647 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwood, S. et al. Saturation variant interpretation using CRISPR prime editing. Nat. Biotechnol. 40, 885–895 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. I. et al. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02172-9 (2024).

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rivera, F. J. et al. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01172-3 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Perner, F. et al. MEN1 mutations mediate clinical resistance to menin inhibition. Nature 615, 913–919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Rufino, J. D. et al. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 186, 2456–2474.e24 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lue, N. Z. et al. Base editor scanning charts the DNMT3A activity landscape. Nat. Chem. Biol. 19, 176–186 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, P. H. et al. Post-translational modification-centric base editor screens to assess phosphorylation site functionality in high throughput. Nat. Methods 21, 1033–1043 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. et al. Assigning functionality to cysteines by base editing of cancer dependency genes. Nat. Chem. Biol. 19, 1320–1330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabrera, A. et al. The sound of silence: transgene silencing in mammalian cell engineering. Cell Syst. 13, 950–973 (2022).

    Article  PubMed  Google Scholar 

  • Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrao, E. & Engelman, A. N. Sites of retroviral DNA integration: from basic research to clinical applications. Crit. Rev. Biochem. Mol. Biol. 51, 26–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Shao, L. et al. Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products. J. Transl. Med. 20, 514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers?. Cell Death Differ. 25, 154–160 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2, a001008 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • The TP53 Database (National Cancer Institute, 2025); https://tp53.cancer.gov/

  • Petitjean, A., Achatz, M. I. W., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Donehower, L. A. et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28, 1370–1384.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Guo, M., Wei, H. & Chen, Y. Targeting p53 pathways: mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 8, 92 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arya, A. K. et al. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br. J. Cancer 103, 186–195 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomelli, A. O. et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50, 1381–1387 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucab, J. E., Hollstein, M., Arlt, V. M. & Phillips, D. H. Nutlin-3a selects for cells harbouring TP53 mutations. Int. J. Cancer 140, 877–887 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Montecucco, A., Zanetta, F. & Biamonti, G. Molecular mechanisms of etoposide. EXCLI J. 14, 95–108 (2015).

    PubMed  PubMed Central  Google Scholar 

  • Menendez, D. et al. Etoposide-induced DNA damage is increased in p53 mutants: identification of ATR and other genes that influence effects of p53 mutations on Top2-induced cytotoxicity. Oncotarget 13, 332–346 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangree, A. K. et al. Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nat. Commun. 13, 1318 (2022).

  • Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259–1262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbur, J. R. et al. Mdm-2 binding and TAF(II)31 recruitment is regulated by hydrogen bond disruption between the p53 residues Thr18 and Asp21. Oncogene 21, 7100–7113 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hafsi, H., Santos-Silva, D., Courtois-Cox, S. & Hainaut, P. Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53. BMC Cancer 13, 134 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joruiz, S. M. & Bourdon, J.-C. P53 isoforms: key regulators of the cell fate decision. Cold Spring Harb. Perspect. Med. 6, a026039 (2016).

  • McGee, A. V. et al. Modular vector assembly enables rapid assessment of emerging CRISPR technologies. Cell Genom. 4, 100519 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 686–697 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, T. P. et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat. Biotechnol. 37, 626–631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluesner, M. G. et al. EditR: a method to quantify base editing from Sanger sequencing. CRISPR J. 1, 239–250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shy, B. R., MacDougall, M. S., Clarke, R. & Merrill, B. J. Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucleic Acids Res. 44, 7997–8010 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agudelo, D. et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat. Methods 14, 615–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Xu, D.-H. et al. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J. Cell. Mol. Med. 22, 2231–2239 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibshman, G. N. et al. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat. Commun. 15, 3663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, H. et al. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. Mol. Cell 85, 1730–1742.e9 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, Q. et al. PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat. Plants 7, 25–33 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W. et al. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. Nat. Commun. 10, 4541 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz, D. M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Schoonenberg, V. A. C. et al. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol. 19, 169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman, J. A. et al. Functional dissection of human mitotic genes using CRISPR-Cas9 tiling screens. Genes Dev. 36, 495–510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42, D980–D985 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Levesque, S. et al. Marker-free co-selection for successive rounds of prime editing in human cells. Nat. Commun. 13, 5909 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herger, M. et al. High-throughput screening of human genetic variants by pooled prime editing. Cell Genom. 5, 100814 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, J. Y. et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat. Commun. 12, 1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Reis, A. C. et al. Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nat. Biotechnol. 37, 1294–1301 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Katti, A. et al. GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Res. 48, 2841–2852 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho, M. A. et al. BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B. BMC Biol. 16, 150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S. et al. Universal toxin-based selection for precise genome engineering in human cells. Nat. Commun. 12, 497 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, R. et al. Base-editing mutagenesis maps alleles to tune human T cell functions. Nature 625, 805–812 (2024).

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Oh, H.-C., Lee, S. & Kim, H. H. Saturation profiling of drug-resistant genetic variants using prime editing. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02465-z (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho, M. A. et al. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 41, 288–303.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pablo, J. L. B. et al. Scanning mutagenesis of the voltage-gated sodium channel NaV1.2 using base editing. Cell Rep. 42, 112563 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho, M. A. et al. Base editing screens define the genetic landscape of cancer drug resistance mechanisms. Nat. Genet. https://doi.org/10.1038/s41588-024-01948-8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin, A. F. et al. MaveDB 2024: a curated community database with over seven million variant effects from multiplexed functional assays. Genome Biol. 26, 13 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2, 8 (2022).

    Article  CAS  Google Scholar 

  • Kaplan, E. et al. Data: activity-based selection for enhanced base editor mutational scanning. Zenodo https://doi.org/10.5281/zenodo.16642753 (2025).

  • Drepanos, L. TP53 base editing tiling screen with activity-based selection (Etoposide arm). MaveDB https://www.mavedb.org/experiments/urn:mavedb:00001245-a (2025).

  • Kaplan, E. & Drepanos, L. Code: activity-based selection for enhanced base editor mutational scanning. Zenodo https://doi.org/10.5281/zenodo.16624354 (2025).