A HO-1 gene knockout using a NanoCRISPR scaffold suppresses metastasis in mouse models

a-ho-1-gene-knockout-using-a-nanocrispr-scaffold-suppresses-metastasis-in-mouse-models
A HO-1 gene knockout using a NanoCRISPR scaffold suppresses metastasis in mouse models
  • Pham, T. C., Nguyen, V. N., Choi, Y., Lee, S. & Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 121, 13454–13619 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Overchuk, M. et al. Subtherapeutic photodynamic treatment facilitates tumor nanomedicine delivery and overcomes desmoplasia. Nano Lett. 21, 344–352 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  • Yang, W. et al. Size-transformable antigen-presenting cell-mimicking nanovesicles potentiate effective cancer immunotherapy. Sci. Adv. 6, 1631 (2020).

    Article  Google Scholar 

  • Meng, Z. et al. Light-triggered in situ gelation to enable robust photodynamic-immunotherapy by repeated stimulations. Adv. Mater. 31, 1900927 (2019).

    Article  Google Scholar 

  • Guo, Y. et al. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci. Adv. 8, 2941 (2022).

    Article  Google Scholar 

  • Huang, Z. et al. Rational vaccinology: harnessing nanoscale chemical design for cancer immunotherapy. ACS Cent. Sci. 8, 692–704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, L. et al. An activity-based photosensitizer to reverse hypoxia and oxidative resistance for tumor photodynamic eradication. Adv. Mater. 34, 2206659 (2022).

    Article  CAS  Google Scholar 

  • Li, J. K., Zhang, M. Y., Zeng, L., Huang, L. & Wang, X. Y. NIR-absorbing B, N-heteroarene as photosensitizer for high-performance NIR-to-blue triplet–triplet annihilation upconversion. Angew. Chem. Int. Ed. 62, 202303093 (2023).

    Article  Google Scholar 

  • Cheng, H. B. et al. Protein-activatable diarylethene monomer as a smart trigger of noninvasive control over reversible generation of singlet oxygen: a facile, switchable, theranostic strategy for photodynamic-immunotherapy. J. Am. Chem. Soc. 143, 2413–2422 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, K. et al. Tissue-adhesive wirelessly powered optoelectronic device for metronomic photodynamic cancer therapy. Nat. Biomed. Eng. 3, 27–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, 040971 (2020).

    Google Scholar 

  • Liu, Y. et al. Tumor selective metabolic reprogramming as a prospective PD-L1 depression strategy to reactivate immunotherapy. Adv. Mater. 34, 2206121 (2022).

    Article  CAS  Google Scholar 

  • Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Mali, P., Esvelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F. A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickar-Oliver, A. & Gersbach, C. A. The next generation of CRISPR–Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20, 490–507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J. et al. Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nat. Nanotechnol. 14, 388–397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Han, Z., Evangelopoulos, M. & Mirkin, C. A. CRISPR spherical nucleic acids. J. Am. Chem. Soc. 144, 18756–18760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfarouk, K. O. et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 15, 71 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L. et al. Multifunctional light-activatable nanocomplex conducting temperate-heat photothermal therapy to avert excessive inflammation and trigger augmented immunotherapy. Biomaterials 290, 121815 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Wang, N. et al. Multistage sensitive NanoCRISPR enable efficient intracellular disruption of immune checkpoints for robust innate and adaptive immune coactivation. Adv. Funct. Mater. 30, 2004940 (2020).

    Article  CAS  Google Scholar 

  • Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Sun, Q., Zhou, Z., Qiu, N. & Shen, Y. Rational design of cancer nanomedicine: nanoproperty integration and synchronization. Adv. Mater. 29, 1606628 (2017).

    Article  Google Scholar 

  • Song, X. et al. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev. 168, 158–180 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. et al. Programmable delivery of immune adjuvant to tumor-infiltrating dendritic cells for cancer immunotherapy. Nano Lett. 20, 4882–4889 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Callmann, C. E. et al. Tumor cell lysate-loaded immunostimulatory spherical nucleic acids as therapeutics for triple-negative breast cancer. Proc. Natl Acad. Sci. USA 117, 17543–17550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinman, D. M. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat. Rev. Immunol. 4, 249–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Nakano, T. et al. Double-stranded structure of the polyinosinic-polycytidylic acid molecule to elicit TLR3 signaling and adjuvant activity in murine intranasal A(H1N1) pdm09 influenza vaccination. DNA Cell Biol. 39, 1730–1740 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Mata-Haro, V. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–1632 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J., Nakamura, B. N., Mohar, I., Kavanagh, T. J. & Luderer, U. Glutamate cysteine ligase modifier subunit (gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology 156, 3329–3343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiwert, N. et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis. 11, 787 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, N. K., Fitzgerald, H. K. & Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 21, 411–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto, Y., Kondo, K. & Momiyama, Y. The protective role of heme oxygenase-1 in atherosclerotic diseases. Int. J. Mol. Sci. 20, 3628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yachie, A. Heme oxygenase-1 deficiency and oxidative stress: a review of 9 independent human cases and animal models. Int. J. Mol. Sci. 22, 1514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, M. et al. Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10, 966 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Alloatti, A., Kotsias, F., Magalhaes, J. G. & Amigorena, S. Dendritic cell maturation and cross-presentation: timing matters! Immunol. Rev. 272, 97–108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y. et al. Cytosolic delivery of membrane-impermeable molecules in dendritic cells using pH-responsive core-shell nanoparticles. Nano Lett. 7, 3056–3064 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Lugo-Villarino, G., Maldonado-Lopez, R., Possemato, R., Penaranda, C. & Glimcher, L. H. T-bet is required for optimal production of IFN-gamma and antigen-specific T cell activation by dendritic cells. Proc. Natl Acad. Sci. USA 100, 7749–7754 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, J. et al. Interferon-gamma is an autocrine mediator for dendritic cell maturation. Immunol. Lett. 94, 141–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4+ T cells: differentiation and functions. Clin. Dev. Immunol. 2012, 925135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Borst, J., Ahrends, T., Babala, N., Melief, C. J. M. & Kastenmuller, W. CD4+ T cell help in cancer immunology and immunotherapy. Nat. Rev. Immunol. 18, 635–647 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Doroshow, D. B. et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 18, 345–362 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sanmamed, M. F. & Chen, L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell 175, 313–326 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiller, J. G., Perry, N. J., Poulogiannis, G., Riedel, B. & Sloan, E. K. Perioperative events influence cancer recurrence risk after surgery. Nat. Rev. Clin. Oncol. 15, 205–218 (2018).

    Article  PubMed  Google Scholar 

  • Wang, T. et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat. Commun. 9, 1532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, L., Schrump, D. S. & Gildersleeve, J. C. Whole-cell cancer vaccines induce large antibody responses to carbohydrates and glycoproteins. Cell Chem. Biol. 23, 1515–1525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlick, A. et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunol. Res. 8, 70–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F. et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J. Clin. Invest. 129, 2056–2070 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Sharma, P. K., Peter Goedegebuure, S. & Gillanders, W. E. Personalized cancer vaccines: targeting the cancer mutanome. Vaccine 35, 1094–1100 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Sun, C. & Xu, S. Advances in personalized neoantigen vaccines for cancer immunotherapy. Biosci. Trends. 14, 349–353 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Tureci, O. et al. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin. Cancer Res. 22, 1885–1896 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Brennick, C. A., George, M. M., Corwin, W. L., Srivastava, P. K. & Ebrahimi-Nik, H. Neoepitopes as cancer immunotherapy targets: key challenges and opportunities. Immunotherapy 9, 361–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Vanmeerbeek, I. et al. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 9, 1703449 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fucikova, J. et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 11, 1013 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 10, 3349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasan, N., Baselga, J. & Hyman, D. M. A view on drug resistance in cancer. Nature 575, 299–309 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, S. et al. A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Wu, D. et al. Roles of tumor heterogeneity in the development of drug resistance: a call for precision therapy. Semin Cancer Biol. 42, 13–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Chin, A. L. et al. Implantable optical fibers for immunotherapeutic delivery and tumor impedance measurement. Nat. Commun. 12, 5138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, L. et al. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. Adv. Mater. 25, 5928–5936 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Grosjean, C. et al. Isolation and enrichment of mouse splenic T cells for ex vivo and in vivo T cell receptor stimulation assays. STAR Protoc. 2, 100961 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, N. A HO-1 gene knockout using a NanoCRISPR scaffold suppresses metastasis in mouse models. NCBI SRA https://www.ncbi.nlm.nih.gov/sra/PRJNA1290303 (2025).