Steric stabilization-independent stealth cloak enables nanoreactors-mediated starvation therapy against refractory cancer

steric-stabilization-independent-stealth-cloak-enables-nanoreactors-mediated-starvation-therapy-against-refractory-cancer
Steric stabilization-independent stealth cloak enables nanoreactors-mediated starvation therapy against refractory cancer
  • Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama, M. et al. Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J. Control. Release 11, 269–278 (1990).

    Article  CAS  Google Scholar 

  • Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, K., Kwon, G. S., Yokoyama, M., Okano, T. & Sakurai, Y. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 24, 119–132 (1993).

    Article  CAS  Google Scholar 

  • Gref, R. et al. Biodegradable long-circulating polymeric nanospheres. Science 263, 1600–1603 (1994).

    Article  CAS  PubMed  Google Scholar 

  • McPherson, T. B., Lee, S. J. & Park, K. Analysis of the prevention of protein adsorption by steric repulsion theory. ACS Symp. Ser. 602, 395–404 (1995).

    Article  CAS  Google Scholar 

  • Otsuka, H., Nagasaki, Y. & Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 55, 403–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem. 4, 59–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, Y. et al. Micelles with ultralow critical micelle concentration as carriers for drug delivery. Nat. Biomed. Eng. 2, 318–325 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama, N., Kato, Y., Sugiyama, Y. & Kataoka, K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm. Res. 18, 1035–1041 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, N. et al. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63, 8977–8983 (2003).

    CAS  PubMed  Google Scholar 

  • Cabral, H., Nishiyama, N., Okazaki, S., Koyama, H. & Kataoka, K. Preparation and biological properties of dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt)-loaded polymeric micelles. J. Control. Release 101, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, K., Harada, A. & Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev. 47, 113–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Fox, M. E., Szoka, F. C. & Frechet, J. M. J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Perry, J. L. et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tockary, T. A. et al. Tethered PEG crowdedness determining shape and blood circulation profile of polyplex micelle gene carriers. Macromolecules 46, 6585–6592 (2013).

    Article  CAS  Google Scholar 

  • Yang, Q. et al. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 11, 1250–1258 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral, H., Miyata, K., Osada, K. & Kataoka, K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 118, 6844–6892 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).

    Article  CAS  Google Scholar 

  • Wen, P. et al. Stealth and pseudo-stealth nanocarriers. Adv. Drug Deliv. Rev. 198, 114895 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Record, M. T., Anderson, C. F. & Lohman, T. M. Thermodynamic analysis of ion effects on binding and conformational equilibria of proteins and nucleic acids: roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11, 103–178 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Norde, W. Adsorption of proteins from solution at the solid-liquid interface. Adv. Colloid Interface Sci. 25, 267–340 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Norde, W. Protein adsorption at solid surfaces: a thermodynamic approach. Pure Appl. Chem. 66, 491–496 (1994).

    Article  CAS  Google Scholar 

  • Hoffman, A. S. Non-fouling surface technologies. J. Biomater. Sci. Polym. Ed. 10, 1011–1014 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Vogler, E. A. Water and the acute biological response to surfaces. J. Biomater. Sci. Polym. Ed. 10, 1015–1045 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Achazi, K. et al. Understanding the interaction of polyelectrolyte architectures with proteins and biosystems. Angew. Chem. Int. Ed. 60, 3882–3904 (2021).

    Article  CAS  Google Scholar 

  • Olive, K. P. et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koide, A. et al. Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules. J. Am. Chem. Soc. 128, 5988–5989 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Rocker, C., Potzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  PubMed  Google Scholar 

  • Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon, H. B., Hunter, A. C., Farhangrazi, Z. S. & Moghimi, S. M. A brief history of long circulating nanoparticles. Adv. Drug Deliv. Rev. 188, 114396 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z. M., Ukidve, A., Krishnan, V. & Mitragotri, S. Effect of physicochemical and surface properties on fate of drug nanocarriers. Adv. Drug Deliv. Rev. 143, 3–21 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Anselmo, A. C. et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 9, 3169–3177 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Kong, S. M., Costa, D. F., Jagielska, A., Van Vliet, K. J. & Hammond, P. T. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc. Natl Acad. Sci. USA 118, e2104826118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kríz, J., Dautzenberg, H., Dybal, J. & Kurková, D. Competitive/cooperative electrostatic interactions in macromolecular complexes: multinuclear NMR study of PDADMAC-PMANa complexes in the presence of Al ions. Langmuir 18, 9594–9599 (2002).

    Article  Google Scholar 

  • Kríz, J. & Dautzenberg, H. Cooperative interactions of unlike macromolecules 2: NMR and theoretical study of electrostatic binding of sodium poly(styrenesulfonate)s to copolymers with variably distributed cationic groups. J. Phys. Chem. A 105, 3846–3854 (2001).

    Article  Google Scholar 

  • Mutaf, O. F., Anraku, Y., Kishimura, A. & Kataoka, K. Unilamellar polyion complex vesicles (PICsomes) with tunable permeabilities for macromolecular solutes with different shapes and sizes. Polymer 133, 1–7 (2017).

    Article  CAS  Google Scholar 

  • Klotz, I. M. Ligand-receptor complexes: origin and development of the concept. J. Biol. Chem. 279, 1–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Li, Q. S. et al. Zwitterionic biomaterials. Chem. Rev. 122, 17073–17154 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Nishida, K., Anada, T. & Tanaka, M. Roles of interfacial water states on advanced biomedical material design. Adv. Drug Deliv. Rev. 186, 114310 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Kataoka, K., Tsuruta, T., Akaike, T. & Sakurai, Y. Biomedical behavior of synthetic polyion complexes toward blood platelets. Makromol. Chem. 181, 1363–1373 (1980).

    Article  CAS  Google Scholar 

  • Flory, P. J. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63, 3083–3090 (1941).

    Article  CAS  Google Scholar 

  • Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada, A. & Nakamura, H. Nature of the charge distribution in proteins. Nature 293, 757–758 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, H. Roles of electrostatic interaction in proteins. Q. Rev. Biophys. 29, 1–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Lai, S. K., Wang, Y. Y. & Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 158–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ladd, J., Zhang, Z., Chen, S., Hower, J. C. & Jiang, S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromolecules 9, 1357–1361 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Delgado, J. D. & Schlenoff, J. B. Static and dynamic solution behavior of a polyzwitterion using a Hofmeister salt series. Macromolecules 50, 4454–4464 (2017).

    Article  CAS  Google Scholar 

  • Li, S. D. et al. Tumor microenvironment-tailored weakly cell-interacted extracellular delivery platform enables precise antibody release and function. Adv. Funct. Mater. 29, 1903296 (2019).

    Article  CAS  Google Scholar 

  • Zhang, L. L. et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 9, 2424–2432 (2016).

    Article  CAS  Google Scholar 

  • Huang, C. & Mason, J. T. Geometric packing constraints in egg phosphatidylcholine vesicles. Proc. Natl Acad. Sci. USA 75, 308–310 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, C. et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci. Rep. 22, 225–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Tirosh, O., Barenholz, Y., Katzhendler, J. & Priev, A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 74, 1371–1379 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbuzenko, O., Barenholz, Y. & Priev, A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids 135, 117–129 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Arnold, K., Herrmann, A., Pratsch, L. & Gawrisch, K. The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815, 515–518 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Sorensen, K. K., Simon-Santamaria, J., McCuskey, R. S. & Smedsrod, B. Liver sinusoidal endothelial cells. Compr. Physiol. 5, 1751–1774 (2015).

    Article  PubMed  Google Scholar 

  • Dirisala, A. et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 6, eabb8133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, K. et al. Kupffer cells determine intrahepatic traffic of PEGylated liposomal doxorubicin. Nat. Commun. 15, 6136 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sueyoshi, D., Anraku, Y., Komatsu, T., Urano, Y. & Kataoka, K. Enzyme-loaded polyion complex vesicles as in vivo nanoreactors working sustainably under the blood circulation: characterization and functional evaluation. Biomacromolecules 18, 1189–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Anraku, Y., Kishimura, A., Yamasaki, Y. & Kataoka, K. Living unimodal growth of polyion complex vesicles via two-dimensional supramolecular polymerization. J. Am. Chem. Soc. 135, 1423–1429 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Anraku, Y. et al. Systemically injectable enzyme-loaded polyion complex vesicles as in vivo nanoreactors functioning in tumors. Angew. Chem. Int. Ed. 55, 560–565 (2016).

    Article  CAS  Google Scholar 

  • Li, J., Anraku, Y. & Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem. Int. Ed. 59, 13526–13530 (2020).

    Article  CAS  Google Scholar 

  • Chen, H. et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J. Am. Chem. Soc. 136, 157–163 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Wen, P. et al. Engineering durable antioxidative nanoreactors as synthetic organelles for autoregulatory cellular protection against oxidative stress. J. Control. Release 382, 113683 (2025).

    Article  CAS  PubMed  Google Scholar 

  • Dufour, E. et al. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas 41, 940–948 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Chiu, M., Taurino, G., Bianchi, M. G., Kilberg, M. S. & Bussolati, O. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front. Oncol. 9, 1480 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lomelino, C. L., Andring, J. T., McKenna, R. & Kilberg, M. S. Asparagine synthetase: function, structure, and role in disease. J. Biol. Chem. 292, 19952–19958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating, M. J., Holmes, R., Lerner, S. & Ho, D. H. L-Asparaginase and PEG asparaginase—past, present, and future. Leuk. Lymphoma 10, 153–157 (1993).

    Article  PubMed  Google Scholar 

  • Xiao, Y. et al. Emerging therapies in cancer metabolism. Cell Metab. 35, 1283–1303 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Pieters, R. et al. L-Asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer 117, 238–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Knott, S. R. V. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, A. N. A. et al. Differences between KC and KPC pancreatic ductal adenocarcinoma mice models, in terms of their modeling biology and their clinical relevance. Pancreatology 20, 79–88 (2020).

    Article  Google Scholar 

  • Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J. et al. Stromal modulation reverses primary resistance to immune checkpoint blockade in pancreatic cancer. ACS Nano 12, 9881–9893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosein, A. N., Brekken, R. A. & Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 17, 487–505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, J. D., Cabral, H., Stylianopoulos, T. & Jain, R. K. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 17, 251–266 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Bear, A. S., Vonderheide, R. H. & O’Hara, M. H. Challenges and opportunities for pancreatic cancer immunotherapy. Cancer Cell 38, 788–802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Löhr, M. et al. Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 61, 550–555 (2001).

    PubMed  Google Scholar 

  • Krall, A. S., Xu, S., Graeber, T. G., Braas, D. & Christofk, H. R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 7, 11457 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassolian, M., Chass, G. A., Setiadi, D. H. & Csizmadia, I. G. Asparagine—ab initio structural analyses. J. Mol. Struct. THEOCHEM 666-667, 273–278 (2003).

    Article  CAS  Google Scholar 

  • Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kano, M. R. et al. Comparison of the effects of the kinase inhibitors imatinib, sorafenib, and transforming growth factor-β receptor inhibitor on extravasation of nanoparticles from neovasculature. Cancer Sci. 100, 173–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. D., Seano, G. & Jain, R. K. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu. Rev. Physiol. 81, 505–534 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, J. D. et al. Dexamethasone increases cisplatin-loaded nanocarrier delivery and efficacy in metastatic breast cancer by normalizing the tumor microenvironment. ACS Nano 13, 6396–6408 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Panagi, M. et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics 10, 1910–1922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mpekris, F. et al. Normalizing the microenvironment overcomes vessel compression and resistance to nano-immunotherapy in breast cancer lung metastasis. Adv. Sci. 8, 2001917 (2021).

    Article  CAS  Google Scholar 

  • Qin, M. M., Feng, Z. H. & Meng, H. Enhanced transcytosis and retention (ETR) effect. Sci. Bull. 69, 3640–3643 (2024).

    Article  Google Scholar 

  • Tallal, L. et al. E. coli L-asparaginase in the treatment of leukemia and solid tumors in 131 children. Cancer 25, 306–320 (1970).

    CAS  PubMed  Google Scholar 

  • Clarkson, B. et al. Clinical results of treatment with E. coli L-asparaginase in adults with leukemia, lymphoma, and solid tumors. Cancer 25, 279–305 (1970).

    CAS  PubMed  Google Scholar 

  • Hammel, P. et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: an open-label, randomized phase IIb trial. Eur. J. Cancer 124, 91–101 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Sarin, H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J. Angiogenes. Res. 2, 1–19 (2010).

    Article  Google Scholar 

  • Mononen, I. T., Kaartinen, V. M. & Williams, J. C. A fluorometric assay for glycosylasparaginase activity and detection of aspartylglycosaminuria. Anal. Biochem. 208, 372–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Szoka, F. & Papahadjopoulos, D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc. Natl Acad. Sci. USA 75, 4194–4198 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar