Laser-engineered PRIME fiber for panoramic reconfigurable control of neural activity

laser-engineered-prime-fiber-for-panoramic-reconfigurable-control-of-neural-activity
Laser-engineered PRIME fiber for panoramic reconfigurable control of neural activity
  • Szabo, V., Ventalon, C., de Sars, V., Bradley, J. & Emiliani, V. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron 84, 1157–1169 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. et al. A one-photon endoscope for simultaneous patterned optogenetic stimulation and calcium imaging in freely behaving mice. Nat. Biomed. Eng. 7, 499–510 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisanello, F. et al. Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber. Nat. Neurosci. 20, 1180–1188 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, S. et al. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Nat. Commun. 11, 6115 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, F. et al. Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals. Neuron 88, 1136–1148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisanello, F. et al. Multipoint-emitting optical fibers for spatially addressable in vivo optogenetics. Neuron 82, 1245–1254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & de Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardin, J. A. et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi, M., Shiraki, K. & Tajima, K. Optical loss property of silica-based single-mode fibers. J. Light. Technol. 10, 539–543 (1992).

    Article  CAS  Google Scholar 

  • Gupta, P. K., Inniss, D., Kurkjian, C. R. & Zhong, Q. Nanoscale roughness of oxide glass surfaces. J. Non-Cryst. Solids 262, 200–206 (2000).

    Article  CAS  Google Scholar 

  • Eriksson, D. et al. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. Nat. Commun. 13, 985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu, Mai-Anh, T. et al. Targeted micro-fiber arrays for measuring and manipulating localized multi-scale neural dynamics over large, deep brain volumes during behavior. Neuron 112, 909–923.e9 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichenbach, K. L. & Xu, C. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express 15, 2151–2165 (2007).

    Article  PubMed  Google Scholar 

  • Martinez, A., Dubov, M., Khrushchev, I. & Bennion, I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron. Lett. 40, 1170–1172 (2004).

    Article  Google Scholar 

  • Wu, A. Q., Chowdhury, I. H. & Xu, X. Femtosecond laser absorption in fused silica: numerical and experimental investigation. Phys. Rev. B 72, 085128 (2005).

    Article  Google Scholar 

  • Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008).

    Article  CAS  Google Scholar 

  • Erdogan, T. Fiber grating spectra. J. Light. Technol. 15, 1277–1294 (1997).

    Article  Google Scholar 

  • Erdogan, T. & Sipe, J. E. Tilted fiber phase gratings. J. Opt. Soc. Am. A 13, 296–313 (1996).

    Article  CAS  Google Scholar 

  • Lin, J. Y. A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp. Physiol. 96, 19–25 (2011).

    Article  PubMed  Google Scholar 

  • Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannes, D. J. Spectroscopic method for determination of the absorption coefficient in brain tissue. J. Biomed. Opt. 15, 057005 (2010).

    Article  Google Scholar 

  • Sahibzada, N., Dean, P. & Redgrave, P. Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J. Neurosci. 6, 723–733 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, X. et al. A dual-channel optogenetic stimulator selectively modulates distinct defensive behaviors. iScience 25, 103681 (2022).

    Article  PubMed  Google Scholar 

  • Weinreb, C. et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics. Nat. Methods 21, 1329–1339 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandler, R. & Depaulis, A. Elicitation of intraspecific defence reactions in the rat from midbrain periaqueductal grey by microinjection of kainic acid, without neurotoxic effects. Brain Res. 440, 167–177 (1988).

    Google Scholar 

  • Bandler, R. & Shipley, M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?. Trends Neurosci. 17, 379–389 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Wheatcroft, T., Saleem, A. B. & Solomon, S. G. Functional organisation of the mouse superior colliculus. Front. Neural Circuits 16, 792959 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andresen, E. R., Sivankutty, S., Tsvirkun, V., Bouwmans, G. & Rigneault, H. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives. J. Biomed. Opt. 21, 121506 (2016).

    Article  PubMed  Google Scholar 

  • Chen, M., He, T. & Zhao, Y. Review of femtosecond laser machining technologies for optical fiber microstructures fabrication. Opt. Laser Technol. 147, 107628 (2022).

    Article  CAS  Google Scholar 

  • Reutsky-Gefen, I. et al. Holographic optogenetic stimulation of patterned neuronal activity for vision restoration. Nat. Commun. 4, 1509 (2013).

    Article  PubMed  Google Scholar 

  • Adesnik, H. & Abdeladim, L. Probing neural codes with two-photon holographic optogenetics. Nat. Neurosci. 24, 1356–1366 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Reichenbach, K. L. & Xu, C. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt. Express 16, 21598–21607 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peron, S. & Svoboda, K. From cudgel to scalpel: toward precise neural control with optogenetics. Nat. Methods 8, 30–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Meadowlark Optics. 1024 x 1024 spatial light modulator. meadowlark.com https://www.meadowlark.com/1k-x-1k-spatial-light-modulator (2025).

  • Turtaev, S. et al. Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics. Opt. Express 25, 29874–29884 (2017).

    Article  PubMed  Google Scholar 

  • Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, C. et al. Polymer fiber probes enable optical control of spinal cord and muscle function in vivo. Adv. Funct. Mater. 24, 6594–6600 (2014).

    Article  CAS  Google Scholar 

  • Liu, X. et al. Fatigue-resistant hydrogel optical fibers enable peripheral nerve optogenetics during locomotion. Nat. Methods 20, 1802–1809 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L. et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 6, 1800427 (2018).

    Article  Google Scholar 

  • Malitson, I. H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55, 1205 (1965).

    Article  CAS  Google Scholar 

  • Keiser, G. Optical Fiber Communications (McGraw-Hill, 2000).

  • Mehul. Complex-wavelet structural similarity index (CW-SSIM). MATLAB https://www.mathworks.com/matlabcentral/fileexchange/43017-complex-wavelet-structural-similarity-index-cw-ssim (2023).

  • Ji, S. et al. High-aspect-ratio microtubes with variable diameter and uniform wall thickness by compressing Bessel hologram phase depth. Opt. Lett. 43, 3514–3517 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A. & Valentini, G. A solid tissue phantom for photon migration studies. Phys. Med. Biol. 42, 1971 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, K. H., Devor, A., Ulbert, I., Dale, A. M. & Einevoll, G. T. Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities. J. Neurosci. Methods 154, 116–133 (2006).

    Article  PubMed  Google Scholar 

  • Redish, D. adredish/MClust-Spike-Sorting-Toolbox. GitHub https://github.com/adredish/MClust-Spike-Sorting-Toolbox (2023).

  • Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, J. I. & Kepecs, A. A low-cost programmable pulse generator for physiology and behavior. Front. Neuroeng. 7, 43 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar