Schneider, G., Schmidt-Supprian, M., Rad, R. & Saur, D. Tissue-specific tumorigenesis: context matters. Nat. Rev. Cancer 17, 239–253 (2017).
Potente, M. & Mäkinen, T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18, 477–494 (2017).
Rafelski, S. M. & Theriot, J. A. Establishing a conceptual framework for holistic cell states and state transitions. Cell 187, 2633–2651 (2024).
Gullapalli, R. R., Desai, K. V., Santana-Santos, L., Kant, J. A. & Becich, M. J. Next generation sequencing in clinical medicine: challenges and lessons for pathology and biomedical informatics. J. Pathol. Inform. 3, 40 (2012).
Atanasov, A. G., Zotchev, S. B., Dirsch, V. M. & Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20, 200–216 (2021).
Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell perturbation responses. Nat. Methods 16, 715–721 (2019).
Kana, O. et al. Generative modeling of single-cell gene expression for dose-dependent chemical perturbations. Patterns 4, 100817 (2023).
Bunne, C. et al. Learning single-cell perturbation responses using neural optimal transport. Nat. Methods 20, 1759–1768 (2023).
Roohani, Y., Huang, K. & Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 42, 927–935 (2023).
Chen, Y. & Zou, J. Simple and effective embedding model for single-cell biology built from ChatGPT. Nat. Biomed. Eng. 9, 483–493 (2025).
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations (ICLR 2014) (eds Bengio, Y. & LeCun, Y.) (OpenReview, 2014).
Yang, L. et al. Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56, 1–39 (2023).
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural Information Processing Systems 33 (NeurIPS 2020) (eds Larochelle, H. et al.) 6840–6851 (Curran Associates, 2020).
Guo, Z. et al. Diffusion models in bioinformatics and computational biology. Nat. Rev. Bioeng. 2, 136–154 (2023).
Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 10684–10695 (IEEE, 2022).
Pandey, K., Mukherjee, A., Rai, P. & Kumar, A. VAEs meet diffusion models: efficient and high-fidelity generation. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (OpenReview, 2021); https://openreview.net/pdf?id=-J8dM4ed_92
Sadria, M. & Layton, A. scVAEDer: integrating deep diffusion models and variational autoencoders for single-cell transcriptomics analysis. Genome Biol. 26, 64 (2025).
Luo, E., Hao, M., Wei, L. & Zhang, X. scDiffusion: conditional generation of high-quality single-cell data using diffusion model. Bioinformatics 40, btae518 (2024).
Tang, W. et al. A general single-cell analysis framework via conditional diffusion generative models. Preprint at bioRxiv https://doi.org/10.1101/2023.10.13.562243 (2023).
Preechakul, K., Chatthee, N., Wizadwongsa, S. & Suwajanakorn, S. Diffusion autoencoders: toward a meaningful and decodable representation. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 10619–10629 (IEEE, 2022).
Bunne, C. et al. How to build the virtual cell with artificial intelligence: priorities and opportunities. Cell 187, 7045–7063 (2024).
Song, J., Meng, C. & Ermon, S. Denoising diffusion implicit models. In 9th International Conference on Learning Representations (ICLR 2021) (OpenReview, 2021); https://openreview.net/pdf?id=St1giarCHLP
Yahaya, B. H. Organoid Technology for Disease Modelling and Personalized Treatment (Springer Nature, 2022).
Nikolova, M. T. et al. Fate and state transitions during human blood vessel organoid development. Cell 188, 3329–3348.e31 (2025).
Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).
Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 18, 174 (2017).
Cuomo, A. S. E., et al. Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).
Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007).
Schrode, N., Saiz, N., Di Talia, S. & Hadjantonakis, A.-K. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29, 454–467 (2014).
Wilson, V. & Beddington, R. Expression of T protein in the primitive streak is necessary and sufficient for posterior mesoderm movement and somite differentiation. Dev. Biol. 192, 45–58 (1997).
Wolf, F. A. et al. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 20, 59 (2019).
Cannoodt, R. et al. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. Preprint at bioRxiv https://doi.org/10.1101/079509 (2016).
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).
Norman, T. M. et al. Exploring genetic interaction manifolds constructed from rich single-cell phenotypes. Science 365, 786–793 (2019).
Zhao, W., et al. Deconvolution of cell type-specific drug responses in human tumor tissue with single-cell RNA-seq. Genome Med. 13, 82 (2021).
Qi, X., et al. Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery. Nat. Commun. 15, 9256 (2024).
Srivatsan, S. R., et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 367, 45–51 (2020).
Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).
Yang, S. et al. Organoids: the current status and biomedical applications. MedComm 4, e274 (2023).
Huang, Y. et al. Deciphering the impact of aging on splenic endothelial cell heterogeneity and immunosenescence through single-cell RNA sequencing analysis. Immun. Ageing 21, 48 (2024).
Mettler, F. A. Jr & Voelz, G. L. Major radiation exposure — what to expect and how to respond. N. Engl. J. Med. 346, 1554–1561 (2002).
Kameni, L. E. et al. A review of radiation-induced vascular injury and clinical impact. Ann. Plast. Surg. 92, 181–185 (2024).
Durante, M. New challenges in high-energy particle radiobiology. Br. J. Radiol. 87, 20130626 (2014).
Tavakol, D. N. et al. Modeling and countering the effects of cosmic radiation using bioengineered human tissues. Biomaterials 301, 122267 (2023).
Chancellor, J. C., Scott, G. B. I. & Sutton, J. P. Space radiation: the number one risk to astronaut health beyond low earth orbit. Life 4, 491–510 (2014).
Wijerathne, H. et al. Mechanisms of radiation-induced endothelium damage: emerging models and technologies. Radiother. Oncol. 158, 21–32 (2021).
Oliner, J. D., Saiki, A. Y. & Caenepeel, S. The role of MDM2 amplification and overexpression in tumorigenesis. Cold Spring Harb. Perspect. Med. 6, a026336 (2016).
Ruef, C. & Coleman, D. L. Granulocyte–macrophage colony-stimulating factor: pleiotropic cytokine with potential clinical usefulness. Rev. Infect. Dis. 12, 41–62 (1990).
Ping, S., Qiu, X., Gonzalez-Toledo, M. E., Liu, X. & Zhao, L.-R. Stem cell factor in combination with granulocyte colony-stimulating factor reduces cerebral capillary thrombosis in a mouse model of CADASIL. Cell Transplant. 27, 637–647 (2018).
Furmento, V. A., Marino, J., Blank, V. C. & Roguin, L. P. The granulocyte colony-stimulating factor (G-CSF) upregulates metalloproteinase-2 and VEGF through PI3K/Akt and Erk1/2 activation in human trophoblast Swan 71 cells. Placenta 35, 937–946 (2014).
Boneberg, E. M. & Hartung, T. Molecular aspects of anti-inflammatory action of G-CSF. Inflamm. Res. 51, 119–128 (2002).
Magné, N. et al. NF-κB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett. 231, 158–168 (2006).
Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).
Delp, M. D., Charvat, J. M., Limoli, C. L., Globus, R. K. & Ghosh, P. Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci. Rep. 6, 29901 (2016).
Barcellos-Hoff, M. H., et al. Concepts and challenges in cancer risk prediction for the space radiation environment. Life Sci. Space Res. 6, 92–103 (2015).
Ho, J. et al. Video diffusion models. Adv. Neural Inf. Process. Syst. 35, 8633–8646 (2022).
Wu, K. E. et al. Protein structure generation via folding diffusion. Nat. Commun. 15, 1059 (2024).
Virshup, I. et al. The scverse project provides a computational ecosystem for single-cell omics data analysis. Nat. Biotechnol. 41, 604–606 (2023).
Werschler, N. & Penninger, J. Generation of human blood vessel organoids from pluripotent stem cells. J. Vis. Exp. https://doi.org/10.3791/64715 (2023).
Tomer, R. et al. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163, 1796–1806 (2015).
Xu, Y. et al. Accelerator-based biological irradiation facility simulating neutron exposure from an improvised nuclear device. Radiat. Res. 184, 404–410 (2015).
Xu, Y. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: application to a neutron spectrum similar to that from an improvised nuclear device. Nucl. Instrum. Methods Phys. Res. A 794, 234–239 (2015).
Tavakol, D. N. et al. Modeling the effects of protracted cosmic radiation in a human organ-on-chip platform. Adv. Sci. 11, 2401415 (2024).
Holden, S. et al. Effects of acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure on behavioral and cognitive performance in mice. Radiat. Res. 196, 31–39 (2021).
He, S. et al. Squidiff. Zenodo https://doi.org/10.5281/zenodo.15061773 (2025).
Cuomo, A. S. E. Single-cell RNA-sequencing of iPS cells differentiating towards definitive endoderm. Zenodo https://zenodo.org/records/3625024#.Xil-0y2cZ0s (2020).
He, S. et al. Squidiff: predicting cellular development and responses to perturbations using a diffusion model. figshare https://doi.org/10.6084/m9.figshare.27948633 (2025).
