References
-
Bimberg, D., Grundmann, M. & Ledentsov, N. Quantum Dot Heterostructures (Wiley-VCH, 2018).
-
Qammar, M. et al. Advancement in QDs for optoelectronic applications and beyond. Nano Res. 17(12), 10426–10445. https://doi.org/10.1007/s12274-024-6982-x (2024).
-
Medintz, I. L., Uyeda, H. T. & Goldman, E. R. Quantum dot-based multiplexed detection with biomolecular recognition. Nat. Mater. 4(6), 435–446 (2005).
-
Benito-Alifonso, D. et al. Quantum dot-based probes for labeling and imaging of cells that express matrix metalloproteinases. ACS Omega 3(8), 9822–9826 (2018).
-
Wang, L. & Huang, S. M. Synthesis and Characterization of ZnS Nanocrystals. J. Nanotechnology 15(3), 123–135 (2021).
-
Agarwal, K., Rai, H. & Mondal, S. Quantum dots: an overview of synthesis, properties, and applications. Mater. Res. Express 10(6), 062001. https://doi.org/10.1088/2053-1591/acda17 (2023).
-
Zhang, J., Qi, K., Pitcheri, R., & Duan, C. (2025). Engineering ZnS Quantum Dots for Photocatalysis: Synthesis, Modifications, and Multifunctional Applications. J. Photochemistry Photobiol. C: Photochem. Rev., 100722.
-
Mandal, S., Ali, S. I. & Mandal, A. C. Investigation of structural, optical and photoluminescence properties of the sol–gel synthesized powder ZnS nanoparticles. Appl. Phys. A 129(3), 219 (2023).
-
Xaba, T. Green synthesis of ZnS nanoparticles and fabrication of ZnS–chitosan nanocomposites for the removal of Cr (vi) ion from wastewater. Green Process. Synthesis 10(1), 374–383 (2021).
-
Yue, L., Qi, S., Wang, J., Cai, J. & Xin, B. Controllable biosynthesis and characterization of α-ZnS and β-ZnS quantum dots: Comparing their optical properties. Mater. Sci. Semicond. Process. 56, 115–118 (2016).
-
Alijani, H. Q., Pourseyedi, S., Torkzadeh Mahani, M. & Khatami, M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J. Mol. Struct. 1175, 214–218. https://doi.org/10.1016/j.molstruc.2018.07.103 (2019).
-
Sarangi, B., Mishra, S. P. & Behera, N. Advances in green synthesis of ZnS nanoparticles: An overview. Mater. Sci. Semicond. Process. 147, 106723 (2022).
-
Kumar, S., Sinha, S. & Yadav, A. Biogenic synthesis of ZnS quantum dots and their applications in biomedicine: A review. Nanomaterials 13(2), 226. https://doi.org/10.3390/nano13020226 (2023).
-
Osman, A. I. et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 22(2), 841–887 (2024).
-
Singh, A.-K. et al. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 10(2), 207. https://doi.org/10.3390/biom10020207 (2020).
-
Kumari, P., Chattopadhyay, S. & Samanta, S. A comprehensive review on rare earth metal doped ZnS nanoparticles: structure, synthesis, properties, and applications in the realm of nanotechnology. Discover Appl. Sci. 7(9), 1011 (2025).
-
Qu, S. C. et al. Photoluminescence properties of Eu 3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl. Phys. Lett. 80(19), 3605–3607 (2002).
-
Planelles-Arago, J. et al. Lanthanide doped ZnS quantum dots dispersed in silica glasses: an easy one pot sol–gel synthesis for obtaining novel photonic materials. J. Mater. Chem. 18(43), 5193–5199 (2008).
-
Kulkarni, S. K. & Kulkarni, S. K. Nanotechnology: principles and practices (Springer, 2015).
-
Ebadi, M., Saadat, M. & Shagholani, H. A new one-pot reverse microemulsion synthesis of ZnS nanoparticle using olive oil as organic solvent and surfactant and their application in remove heavy metal ions. J. Mater. Sci.: Mater. Electron. 26(11), 9087–9091 (2015).
-
Ayodhya, D. & Veerabhadram, G. Green synthesis, optical, structural, photocatalytic, fluorescence quenching and degradation studies of ZnS nanoparticles. J. Fluoresc. 26(6), 2165–2175 (2016).
-
Jacob, J. M. et al. Biogenic design of ZnS quantum dots-Insights into their in-vitro cytotoxicity, photocatalysis and biosensing properties. Ceram. Int. 45(18), 24193–24201 (2019).
-
Mansur, H. S., Mansur, A. A., Soriano-Araújo, A. & Lobato, Z. I. Beyond biocompatibility: an approach for the synthesis of ZnS quantum dot-chitosan nano-immunoconjugates for cancer diagnosis. Green Chem. 17(3), 1820–1830 (2015).
-
Haque, M. et al. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J. Mater. Chem. B 11(9), 1998–2015 (2023).
-
Subramani, T. & Nagarajan, S. K. Structural, optical and morphological properties of Eu rare earth doped WO3 nanoparticles enhanced photocatalytic for waste water treatment and antibacterial activities. Ceram. Int. 50(22), 44822–44832 (2024).
-
Subramani, T. & Kumar Nagarajan, S. Synergic effect of rare earth doped Sm doped WO3 nanoparticles for enhanced MB dye photocatalytic activities of waste water treatment and antibacterial activities against Staphylococcus aureus. Ceramics Int. 50(18), 34226–34239 (2024).
-
Al-Ogaidi, H. A., Karaçam, S., Gurbanov, R. & Vardar-Yel, N. Marine microalgae Schizochytrium sp. S31: Potential source for new antimicrobial and antibiofilm agent. Current Pharmaceutical Biotechnol. 25(11), 1478–1488. https://doi.org/10.2174/0113892010291960240223054911 (2024).
-
Suwan, T., Khongkhunthian, S., Sirithunyalug, J. & Okonogi, S. ’Effect of rice variety and reaction parameters on synthesis and antibacterial activity of silver nanoparticles’. Drug Discoveries & Therapeutics 12(5), 267–274. https://doi.org/10.5582/ddt.2018.01058 (2018).
-
Long, M. et al. Emerging Nanoclay Composite for Effective Hemostasis’’. Adv. Functional Mater. 28(10), 1–9. https://doi.org/10.1002/adfm.201704452 (2017).
-
Shakoor, I. et al. ZnS and Fe-doped ZnS photocatalysts for improved visible light driven photocatalytic degradation of methylene blue. Inorg. Chim. Acta 560, 121837 (2024).
-
Qian, X. & Chen, C. Study on the Luminescence Properties of ZnS:Mn 2+ Particles by High Temperature Solid Phase Method. J. Phys: Conf. Ser. 2168, 012023. https://doi.org/10.1088/1742-6596/2168/1/012023 (2022).
-
Sanguinetti, S., Guzzi, M., & Gurioli, M. (2008). Accessing structural and electronic properties of semiconductor nanostructures via photoluminescence. In Characterization of Semiconductor Heterostructures and Nanostructures (pp. 175–208). Elsevier.
-
Li, Z. et al. Synthesis of ZnS nanocrystals with controllable structure and morphology and theirphotoluminescence property. Nanotechnology 18(25), 255602 (2007).
-
Wang, X., Shi, J., Feng, Z., Li, M. & Li, C. Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys. 13(10), 4715–4723 (2011).
-
Wu, M., Wei, Z., Zhao, W., Wang, X. & Jiang, J. Optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors synthesized by hydrothermal method. J. Nanomater. 2017(1), 1603450 (2017).
-
Murray, C. B., Noms, D. J. & Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993).
-
Lakshmipathy, R. et al. ZnS nanoparticles capped with watermelon rind extract and their potential application in dye degradation. Res Chem Intermed 43, 1329–1339. https://doi.org/10.1007/s11164-016-2700-y (2017).
-
Zhang, H. et al. Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Adv. Func. Mater. 27(7), 1604382. https://doi.org/10.1002/adfm.201604382 (2017).
-
Tudu, S. C. et al. Synthesis and structural characterization of ZnS quantum dots (< 2 nm) vis-à-vis studies on their spectroscopic and dielectric properties. J. Mater. Sci.: Mater. Electron. 35(9), 619 (2024).
-
Rajkumari, N. P., Roy, C. & Goswami, P. Fluorescence Resonance Energy Transfer Study Between ZnS Quantum Dots and Fluoranthene. ChemistrySelect 9(5), e202303460 (2024).
-
Chakraborty, D., Akhuli, A., Preeyanka, N. & Sarkar, M. Energy-transfer-induced enhanced valley splitting of excitonic emission of inorganic CdTe@ ZnS QDs in the presence of organic J-aggregates: a spectroscopic insight into the efficient exciton (inorganic)–exciton (organic) coupling. J. Phys. Chem. C 127(10), 5082–5089 (2023).
-
Zhao, M. et al. MOF-derived inverse opal Cu3P@ C with multi-stage pore structure as the superior anode material for lithium ion battery. Ceram. Int. 49(8), 12876–12884 (2023).
-
Baruah, J. M., Kalita, S. & Narayan, J. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. Int. Nano Lett. https://doi.org/10.1007/s40089-019-0270-x (2019).
-
Senapati, U. S. & Sarkar, D. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys. 88, 557–562 (2014).
-
Gadalla, A., EL-SADEK, M. A., & Hamood, R. (2018). SYNTHESIS, STRUCTURAL AND OPTICAL CHARACTERIZATION OF CdS AND ZnS QUANTUM DOTS. Chalcogenide Letters, 15(5).
-
Şensoy Gün, B., Tunalı, B. & Gurbanov, R. Yeşil Sentez Yöntemi İle Althaea officinalis Bitkisi Kullanılarak Elde Edilen Nanokompozitlerin Karakterizasyonu ve Hemolitik Aktivitelerinin Değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15(1), 22–32. https://doi.org/10.29048/makufebed.1402681 (2024).
-
Mansour, A. F., Abdo, M. A., Maged, F. A. & Agag, G. M. Synthesis, Optical Properties and Stabilization of ZnS Quantum Dots by Polymeric Matrices. J. Inorg. Organomet. Polym Mater. 31(4), 1443–1450. https://doi.org/10.1007/s10904-021-01884- (2021).
-
Kuzmin, A., Pudza, I., Dile, M., Laganovska, K. & Zolotarjovs, A. Examining the Effect of Cu and Mn Dopants on the Structure of Zinc Blende ZnS Nanopowders. Materials (Basel). 16(17), 5825. https://doi.org/10.3390/ma16175825.PMID:37687518;PMCID:PMC10488788 (2023).
-
Şensoy Gün, B., Gurbanov, R. & Tunalı, B. Biofilm-inhibiting ZnO@Eggshell nanocomposites: green synthesis, characterization, and biomedical potential. Biometals https://doi.org/10.1007/s10534-025-00711-8 (2025).
-
Rezvani, M. A., Aghmasheh, M., Hassani, A. & Hassani Ardeshiri, H. Synthesis and characterization of a new hybrid nanocomposite based on di-substituted heteropolyanion- quantum dots as a high-performance nanocatalyst for organic dye removal from wastewater. J. Coordination Chem. https://doi.org/10.1080/00958972.2022.2054705 (2022).
-
Saravanan, R. S. S., Pukazhselvan, D. & Mahadevan, C. K. Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics. J. Alloy. Compd. 517, 139–148 (2012).
-
Hosnedlova, B. et al. Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. Nanomaterials 12, 2183. https://doi.org/10.3390/nano12132183 (2022).
-
Gonzalez-Ballesteros, N., Martins, P. M., Tavares, C. J. & Lanceros-Mendez, S. Quercetin-mediated green synthesis of Au/TiO2 nanocomposites for the photocatalytic degradation of antibiotic ciprofloxacin. J. Ind. Eng. Chem. 143, 526–537 (2025).
-
Chahardoli, A. et al. Optimization of quercetin-assisted silver nanoparticles synthesis and evaluation of their hemocompatibility, antioxidant, anti-inflammatory, and antibacterial effects. Global Chall. 5(12), 2100075 (2021).
-
Çadırcı, M. Temperature-dependent photoluminescence of CdSe/CdTe quasi-type-II quantum dots. J. Lumin. 228, 117551 (2020).
-
Valerini, D. et al. Temperature dependence of the photoluminescence properties of colloidal Cd Se∕ Zn S core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B Condensed Matter Mater. Phys. 71(23), 235409 (2005).
-
Liu, W. et al. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C 117(38), 19288–19294 (2013).
-
Zhou, P., Zhang, X., Liu, X., Xu, J. & Li, L. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots. Opt. Express 24(17), 19506–19516 (2016).
-
Çadırcı, M., Elibol, E., Demirci, T. & Kurban, M. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe2 quantum dots. Luminescence 39(4), e4722 (2024).
-
Yañez-Macías, R. et al. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers 11(11), 1789. https://doi.org/10.3390/polym11111789 (2019).
-
Yılmaz, G. E. et al. Antimicrobial Nanomaterials: A Review. Hygiene 3, 269–290. https://doi.org/10.3390/hygiene3030020 (2023).
-
Talapko, J. et al. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 7(2), 79. https://doi.org/10.3390/jof7020079 (2021).
-
Tsui, C., Kong, E. F. & Jabra-Rizk, M. A. Pathogenesis of Candida albicans biofilm. FEMS Pathogens Disease 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018 (2016).
-
Segura, A. et al. Sulfidogenic Bioreactor-Mediated Formation of ZnS Nanoparticles with Antimicrobial and Photocatalytic Activity. Nanomaterials 13(5), 935. https://doi.org/10.3390/nano13050935 (2023).
-
Suyana, P. et al. Antifungal properties of nanosized ZnS particles synthesised by sonochemical precipitation. RSC Adv. 4(17), 8439. https://doi.org/10.1039/c3ra46642f (2014).
-
Ghobashy, M. M., Elbarbary, A. M., Hegazy, D. E. & Maziad, N. A. Radiation synthesis of pH-sensitive 2-(dimethylamino) ethyl methacrylate/polyethylene oxide/ZnS nanocomposite hydrogel membrane for wound dressing application. J. Drug Delivery Sci. Technol. 73, 103399 (2022).
-
Kamo, A., Ozcan, A., Sonmezoglu, O. A. & Sonmezoglu, S. Understanding antibacterial disinfection mechanisms of oxide-based photocatalytic materials. Nanocomposite Nanohybrid Mater.: Process. Appl. 17(195), 9783111137902–010 (2023).
-
Kamo, A., Sonmezoglu, O. A. & Sonmezoglu, S. Highly efficient photocatalyst based on Zn2-xBaxSnO4 alloying nanoparticles with enhanced photocatalytic activity. Inorg. Chem. Commun. 174, 114080 (2025).
-
Lakshmi Prasanna, V. & Vijayaraghavan, R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33), 9155–9162 (2015).
-
Nagi, J. S., Skorenko, K., Bernier, W., Jones, W. E. & Doiron, A. L. Near infrared-activated dye-linked ZnO nanoparticles release reactive oxygen species for potential use in photodynamic therapy. Materials 13(1), 17 (2019).
-
Yang, X. et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorganic Biochem. 167, 36–48 (2017).
-
Bouasla, N., Abderrahmane, S., Obeizi, Z., Sarah, M. & Saoudi, A. Antimicrobial activity of ZnS and ZnO-TOP nanoparticles against pathogenic bacteria. Chem. Biodivers. 21, e202400724. https://doi.org/10.1002/cbdv.202400724 (2024).
-
Song, W. & Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules 24(6), 1033 (2019).
-
Liu, T. L. et al. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B 11, 10–16 (2010).
-
Srikanth, M. et al. In vitro cytotoxicity studies of industrially used common nanomaterials on L929 and 3T3 fibroblast cells. J ISSN 2766, 2276 (2020).
-
Hens, B. et al. The future of anticancer drugs: A cytotoxicity assessment study of CdSe/ZnS quantum dots. J. Nanotheranostics 1(1), 3 (2020).
-
Meyer, K., Rajanahalli, P., Ahamed, M., Rowe, J. J. & Hong, Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol. In Vitro 25(8), 1721–1726 (2011).
-
Nguyen, C. H., Fu, C. C. & Juang, R. S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 202, 413–427 (2018).
-
Tian, Y. et al. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 83, 104–107 (2012).
-
Subramani, T. et al. Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: A strong impact of morphology. Inorganic Chem. Commun. 142, 109709 (2022).
-
Othman, Z., Sinopoli, A., Mackey, H. R. & Mahmoud, K. A. Efficient photocatalytic degradation of organic dyes by AgNPs/TiO2/Ti3C2T x MXene composites under UV and solar light. ACS Omega 6(49), 33325–33338 (2021).
-
Khan, S. S. et al. Construction of ZnS QDs decorated gC3N4 nanosheets for enhanced catalytic degradation of Rhodamine B. Ceram. Int. 50(19), 36479–36486 (2024).
-
Hazarika, B., Bhattacharjee, B. & Ahmaruzzaman, M. Enhanced photocatalytic degradation of brilliant green using g-C3N5/WO3 nanocomposite: a Z-scheme charge transfer approach under visible light irradiation. Inorg. Chem. Commun. 168, 112960 (2024).
-
Pantoja-Espinoza, J. C., DelaCruz-Alderete, G. A. & Paraguay-Delgado, F. Photocatalytic Degradation of Methylene Blue Dye with g-C3N4/ZnO Nanocomposite Materials Using Visible Light. Catalysts 15(9), 851 (2025).
-
Wang, F. et al. ZnS/C dual-quantum-dots heterostructural nanofibers for high-performance photocatalytic H2O2 production. ACS Appl. Mater. Interfaces. 16(2), 2606–2613 (2024).
-
Zhang, J. et al. Delicate construction of Z-scheme heterojunction photocatalysts by ZnS quantum dots wrapped CoWO4 nanoparticles for highly efficient environmental remediation. ACS Appl. Nano Mater. 7(17), 20101–20113 (2024).
-
Sohel, A. & Singh, S. Photostable selenium-assisted ZnS nanocomposite with efficient visible light photocatalytic activity. Functional Composites Struct. 6(1), 015004 (2024).
-
Wang, Z., Yang, W. & Wang, Y. Self-trapped exciton and large Stokes shift in pristine and carbon-coated silicon carbide quantum dots. J. Phys Chem C 121(36), 20031–20038 (2017).
