Green synthesis of quercetin-mediated ZnS quantum dots and their photocatalytic, antimicrobial, and cytotoxic performances

green-synthesis-of-quercetin-mediated-zns-quantum-dots-and-their-photocatalytic,-antimicrobial,-and-cytotoxic-performances
Green synthesis of quercetin-mediated ZnS quantum dots and their photocatalytic, antimicrobial, and cytotoxic performances

References

  1. Bimberg, D., Grundmann, M. & Ledentsov, N. Quantum Dot Heterostructures (Wiley-VCH, 2018).

    Google Scholar 

  2. Qammar, M. et al. Advancement in QDs for optoelectronic applications and beyond. Nano Res. 17(12), 10426–10445. https://doi.org/10.1007/s12274-024-6982-x (2024).

    Google Scholar 

  3. Medintz, I. L., Uyeda, H. T. & Goldman, E. R. Quantum dot-based multiplexed detection with biomolecular recognition. Nat. Mater. 4(6), 435–446 (2005).

    Google Scholar 

  4. Benito-Alifonso, D. et al. Quantum dot-based probes for labeling and imaging of cells that express matrix metalloproteinases. ACS Omega 3(8), 9822–9826 (2018).

    Google Scholar 

  5. Wang, L. & Huang, S. M. Synthesis and Characterization of ZnS Nanocrystals. J. Nanotechnology 15(3), 123–135 (2021).

    Google Scholar 

  6. Agarwal, K., Rai, H. & Mondal, S. Quantum dots: an overview of synthesis, properties, and applications. Mater. Res. Express 10(6), 062001. https://doi.org/10.1088/2053-1591/acda17 (2023).

    Google Scholar 

  7. Zhang, J., Qi, K., Pitcheri, R., & Duan, C. (2025). Engineering ZnS Quantum Dots for Photocatalysis: Synthesis, Modifications, and Multifunctional Applications. J. Photochemistry Photobiol. C: Photochem. Rev., 100722.

  8. Mandal, S., Ali, S. I. & Mandal, A. C. Investigation of structural, optical and photoluminescence properties of the sol–gel synthesized powder ZnS nanoparticles. Appl. Phys. A 129(3), 219 (2023).

    Google Scholar 

  9. Xaba, T. Green synthesis of ZnS nanoparticles and fabrication of ZnS–chitosan nanocomposites for the removal of Cr (vi) ion from wastewater. Green Process. Synthesis 10(1), 374–383 (2021).

    Google Scholar 

  10. Yue, L., Qi, S., Wang, J., Cai, J. & Xin, B. Controllable biosynthesis and characterization of α-ZnS and β-ZnS quantum dots: Comparing their optical properties. Mater. Sci. Semicond. Process. 56, 115–118 (2016).

    Google Scholar 

  11. Alijani, H. Q., Pourseyedi, S., Torkzadeh Mahani, M. & Khatami, M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J. Mol. Struct. 1175, 214–218. https://doi.org/10.1016/j.molstruc.2018.07.103 (2019).

    Google Scholar 

  12. Sarangi, B., Mishra, S. P. & Behera, N. Advances in green synthesis of ZnS nanoparticles: An overview. Mater. Sci. Semicond. Process. 147, 106723 (2022).

    Google Scholar 

  13. Kumar, S., Sinha, S. & Yadav, A. Biogenic synthesis of ZnS quantum dots and their applications in biomedicine: A review. Nanomaterials 13(2), 226. https://doi.org/10.3390/nano13020226 (2023).

    Google Scholar 

  14. Osman, A. I. et al. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 22(2), 841–887 (2024).

    Google Scholar 

  15. Singh, A.-K. et al. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 10(2), 207. https://doi.org/10.3390/biom10020207 (2020).

    Google Scholar 

  16. Kumari, P., Chattopadhyay, S. & Samanta, S. A comprehensive review on rare earth metal doped ZnS nanoparticles: structure, synthesis, properties, and applications in the realm of nanotechnology. Discover Appl. Sci. 7(9), 1011 (2025).

    Google Scholar 

  17. Qu, S. C. et al. Photoluminescence properties of Eu 3+-doped ZnS nanocrystals prepared in a water/methanol solution. Appl. Phys. Lett. 80(19), 3605–3607 (2002).

    Google Scholar 

  18. Planelles-Arago, J. et al. Lanthanide doped ZnS quantum dots dispersed in silica glasses: an easy one pot sol–gel synthesis for obtaining novel photonic materials. J. Mater. Chem. 18(43), 5193–5199 (2008).

    Google Scholar 

  19. Kulkarni, S. K. & Kulkarni, S. K. Nanotechnology: principles and practices (Springer, 2015).

    Google Scholar 

  20. Ebadi, M., Saadat, M. & Shagholani, H. A new one-pot reverse microemulsion synthesis of ZnS nanoparticle using olive oil as organic solvent and surfactant and their application in remove heavy metal ions. J. Mater. Sci.: Mater. Electron. 26(11), 9087–9091 (2015).

    Google Scholar 

  21. Ayodhya, D. & Veerabhadram, G. Green synthesis, optical, structural, photocatalytic, fluorescence quenching and degradation studies of ZnS nanoparticles. J. Fluoresc. 26(6), 2165–2175 (2016).

    Google Scholar 

  22. Jacob, J. M. et al. Biogenic design of ZnS quantum dots-Insights into their in-vitro cytotoxicity, photocatalysis and biosensing properties. Ceram. Int. 45(18), 24193–24201 (2019).

    Google Scholar 

  23. Mansur, H. S., Mansur, A. A., Soriano-Araújo, A. & Lobato, Z. I. Beyond biocompatibility: an approach for the synthesis of ZnS quantum dot-chitosan nano-immunoconjugates for cancer diagnosis. Green Chem. 17(3), 1820–1830 (2015).

    Google Scholar 

  24. Haque, M. et al. Formation of ZnS quantum dots using green tea extract: applications to protein binding, bio-sensing, anti-bacterial and cell cytotoxicity studies. J. Mater. Chem. B 11(9), 1998–2015 (2023).

    Google Scholar 

  25. Subramani, T. & Nagarajan, S. K. Structural, optical and morphological properties of Eu rare earth doped WO3 nanoparticles enhanced photocatalytic for waste water treatment and antibacterial activities. Ceram. Int. 50(22), 44822–44832 (2024).

    Google Scholar 

  26. Subramani, T. & Kumar Nagarajan, S. Synergic effect of rare earth doped Sm doped WO3 nanoparticles for enhanced MB dye photocatalytic activities of waste water treatment and antibacterial activities against Staphylococcus aureus. Ceramics Int. 50(18), 34226–34239 (2024).

    Google Scholar 

  27. Al-Ogaidi, H. A., Karaçam, S., Gurbanov, R. & Vardar-Yel, N. Marine microalgae Schizochytrium sp. S31: Potential source for new antimicrobial and antibiofilm agent. Current Pharmaceutical Biotechnol. 25(11), 1478–1488. https://doi.org/10.2174/0113892010291960240223054911 (2024).

    Google Scholar 

  28. Suwan, T., Khongkhunthian, S., Sirithunyalug, J. & Okonogi, S. ’Effect of rice variety and reaction parameters on synthesis and antibacterial activity of silver nanoparticles’. Drug Discoveries & Therapeutics 12(5), 267–274. https://doi.org/10.5582/ddt.2018.01058 (2018).

    Google Scholar 

  29. Long, M. et al. Emerging Nanoclay Composite for Effective Hemostasis’’. Adv. Functional Mater. 28(10), 1–9. https://doi.org/10.1002/adfm.201704452 (2017).

    Google Scholar 

  30. Shakoor, I. et al. ZnS and Fe-doped ZnS photocatalysts for improved visible light driven photocatalytic degradation of methylene blue. Inorg. Chim. Acta 560, 121837 (2024).

    Google Scholar 

  31. Qian, X. & Chen, C. Study on the Luminescence Properties of ZnS:Mn 2+ Particles by High Temperature Solid Phase Method. J. Phys: Conf. Ser. 2168, 012023. https://doi.org/10.1088/1742-6596/2168/1/012023 (2022).

    Google Scholar 

  32. Sanguinetti, S., Guzzi, M., & Gurioli, M. (2008). Accessing structural and electronic properties of semiconductor nanostructures via photoluminescence. In Characterization of Semiconductor Heterostructures and Nanostructures (pp. 175–208). Elsevier.

  33. Li, Z. et al. Synthesis of ZnS nanocrystals with controllable structure and morphology and theirphotoluminescence property. Nanotechnology 18(25), 255602 (2007).

    Google Scholar 

  34. Wang, X., Shi, J., Feng, Z., Li, M. & Li, C. Visible emission characteristics from different defects of ZnS nanocrystals. Phys. Chem. Chem. Phys. 13(10), 4715–4723 (2011).

    Google Scholar 

  35. Wu, M., Wei, Z., Zhao, W., Wang, X. & Jiang, J. Optical and magnetic properties of Ni doped ZnS diluted magnetic semiconductors synthesized by hydrothermal method. J. Nanomater. 2017(1), 1603450 (2017).

    Google Scholar 

  36. Murray, C. B., Noms, D. J. & Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 115(19), 8706–8715 (1993).

    Google Scholar 

  37. Lakshmipathy, R. et al. ZnS nanoparticles capped with watermelon rind extract and their potential application in dye degradation. Res Chem Intermed 43, 1329–1339. https://doi.org/10.1007/s11164-016-2700-y (2017).

    Google Scholar 

  38. Zhang, H. et al. Embedding Perovskite Nanocrystals into a Polymer Matrix for Tunable Luminescence Probes in Cell Imaging. Adv. Func. Mater. 27(7), 1604382. https://doi.org/10.1002/adfm.201604382 (2017).

    Google Scholar 

  39. Tudu, S. C. et al. Synthesis and structural characterization of ZnS quantum dots (< 2 nm) vis-à-vis studies on their spectroscopic and dielectric properties. J. Mater. Sci.: Mater. Electron. 35(9), 619 (2024).

    Google Scholar 

  40. Rajkumari, N. P., Roy, C. & Goswami, P. Fluorescence Resonance Energy Transfer Study Between ZnS Quantum Dots and Fluoranthene. ChemistrySelect 9(5), e202303460 (2024).

    Google Scholar 

  41. Chakraborty, D., Akhuli, A., Preeyanka, N. & Sarkar, M. Energy-transfer-induced enhanced valley splitting of excitonic emission of inorganic CdTe@ ZnS QDs in the presence of organic J-aggregates: a spectroscopic insight into the efficient exciton (inorganic)–exciton (organic) coupling. J. Phys. Chem. C 127(10), 5082–5089 (2023).

    Google Scholar 

  42. Zhao, M. et al. MOF-derived inverse opal Cu3P@ C with multi-stage pore structure as the superior anode material for lithium ion battery. Ceram. Int. 49(8), 12876–12884 (2023).

    Google Scholar 

  43. Baruah, J. M., Kalita, S. & Narayan, J. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. Int. Nano Lett. https://doi.org/10.1007/s40089-019-0270-x (2019).

    Google Scholar 

  44. Senapati, U. S. & Sarkar, D. Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J. Phys. 88, 557–562 (2014).

    Google Scholar 

  45. Gadalla, A., EL-SADEK, M. A., & Hamood, R. (2018). SYNTHESIS, STRUCTURAL AND OPTICAL CHARACTERIZATION OF CdS AND ZnS QUANTUM DOTS. Chalcogenide Letters15(5).

  46. Şensoy Gün, B., Tunalı, B. & Gurbanov, R. Yeşil Sentez Yöntemi İle Althaea officinalis Bitkisi Kullanılarak Elde Edilen Nanokompozitlerin Karakterizasyonu ve Hemolitik Aktivitelerinin Değerlendirilmesi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi 15(1), 22–32. https://doi.org/10.29048/makufebed.1402681 (2024).

    Google Scholar 

  47. Mansour, A. F., Abdo, M. A., Maged, F. A. & Agag, G. M. Synthesis, Optical Properties and Stabilization of ZnS Quantum Dots by Polymeric Matrices. J. Inorg. Organomet. Polym Mater. 31(4), 1443–1450. https://doi.org/10.1007/s10904-021-01884- (2021).

    Google Scholar 

  48. Kuzmin, A., Pudza, I., Dile, M., Laganovska, K. & Zolotarjovs, A. Examining the Effect of Cu and Mn Dopants on the Structure of Zinc Blende ZnS Nanopowders. Materials (Basel). 16(17), 5825. https://doi.org/10.3390/ma16175825.PMID:37687518;PMCID:PMC10488788 (2023).

    Google Scholar 

  49. Şensoy Gün, B., Gurbanov, R. & Tunalı, B. Biofilm-inhibiting ZnO@Eggshell nanocomposites: green synthesis, characterization, and biomedical potential. Biometals https://doi.org/10.1007/s10534-025-00711-8 (2025).

    Google Scholar 

  50. Rezvani, M. A., Aghmasheh, M., Hassani, A. & Hassani Ardeshiri, H. Synthesis and characterization of a new hybrid nanocomposite based on di-substituted heteropolyanion- quantum dots as a high-performance nanocatalyst for organic dye removal from wastewater. J. Coordination Chem. https://doi.org/10.1080/00958972.2022.2054705 (2022).

    Google Scholar 

  51. Saravanan, R. S. S., Pukazhselvan, D. & Mahadevan, C. K. Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics. J. Alloy. Compd. 517, 139–148 (2012).

    Google Scholar 

  52. Hosnedlova, B. et al. Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. Nanomaterials 12, 2183. https://doi.org/10.3390/nano12132183 (2022).

    Google Scholar 

  53. Gonzalez-Ballesteros, N., Martins, P. M., Tavares, C. J. & Lanceros-Mendez, S. Quercetin-mediated green synthesis of Au/TiO2 nanocomposites for the photocatalytic degradation of antibiotic ciprofloxacin. J. Ind. Eng. Chem. 143, 526–537 (2025).

    Google Scholar 

  54. Chahardoli, A. et al. Optimization of quercetin-assisted silver nanoparticles synthesis and evaluation of their hemocompatibility, antioxidant, anti-inflammatory, and antibacterial effects. Global Chall. 5(12), 2100075 (2021).

    Google Scholar 

  55. Çadırcı, M. Temperature-dependent photoluminescence of CdSe/CdTe quasi-type-II quantum dots. J. Lumin. 228, 117551 (2020).

    Google Scholar 

  56. Valerini, D. et al. Temperature dependence of the photoluminescence properties of colloidal Cd Se∕ Zn S core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B Condensed Matter Mater. Phys. 71(23), 235409 (2005).

    Google Scholar 

  57. Liu, W. et al. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C 117(38), 19288–19294 (2013).

    Google Scholar 

  58. Zhou, P., Zhang, X., Liu, X., Xu, J. & Li, L. Temperature-dependent photoluminescence properties of quaternary ZnAgInS quantum dots. Opt. Express 24(17), 19506–19516 (2016).

    Google Scholar 

  59. Çadırcı, M., Elibol, E., Demirci, T. & Kurban, M. Investigating the effect of Zn doping and temperature on the photoluminescence behaviour of CuLaSe2 quantum dots. Luminescence 39(4), e4722 (2024).

    Google Scholar 

  60. Yañez-Macías, R. et al. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers 11(11), 1789. https://doi.org/10.3390/polym11111789 (2019).

    Google Scholar 

  61. Yılmaz, G. E. et al. Antimicrobial Nanomaterials: A Review. Hygiene 3, 269–290. https://doi.org/10.3390/hygiene3030020 (2023).

    Google Scholar 

  62. Talapko, J. et al. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi 7(2), 79. https://doi.org/10.3390/jof7020079 (2021).

    Google Scholar 

  63. Tsui, C., Kong, E. F. & Jabra-Rizk, M. A. Pathogenesis of Candida albicans biofilm. FEMS Pathogens Disease 74(4), ftw018. https://doi.org/10.1093/femspd/ftw018 (2016).

    Google Scholar 

  64. Segura, A. et al. Sulfidogenic Bioreactor-Mediated Formation of ZnS Nanoparticles with Antimicrobial and Photocatalytic Activity. Nanomaterials 13(5), 935. https://doi.org/10.3390/nano13050935 (2023).

    Google Scholar 

  65. Suyana, P. et al. Antifungal properties of nanosized ZnS particles synthesised by sonochemical precipitation. RSC Adv. 4(17), 8439. https://doi.org/10.1039/c3ra46642f (2014).

    Google Scholar 

  66. Ghobashy, M. M., Elbarbary, A. M., Hegazy, D. E. & Maziad, N. A. Radiation synthesis of pH-sensitive 2-(dimethylamino) ethyl methacrylate/polyethylene oxide/ZnS nanocomposite hydrogel membrane for wound dressing application. J. Drug Delivery Sci. Technol. 73, 103399 (2022).

    Google Scholar 

  67. Kamo, A., Ozcan, A., Sonmezoglu, O. A. & Sonmezoglu, S. Understanding antibacterial disinfection mechanisms of oxide-based photocatalytic materials. Nanocomposite Nanohybrid Mater.: Process. Appl. 17(195), 9783111137902–010 (2023).

    Google Scholar 

  68. Kamo, A., Sonmezoglu, O. A. & Sonmezoglu, S. Highly efficient photocatalyst based on Zn2-xBaxSnO4 alloying nanoparticles with enhanced photocatalytic activity. Inorg. Chem. Commun. 174, 114080 (2025).

    Google Scholar 

  69. Lakshmi Prasanna, V. & Vijayaraghavan, R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31(33), 9155–9162 (2015).

    Google Scholar 

  70. Nagi, J. S., Skorenko, K., Bernier, W., Jones, W. E. & Doiron, A. L. Near infrared-activated dye-linked ZnO nanoparticles release reactive oxygen species for potential use in photodynamic therapy. Materials 13(1), 17 (2019).

    Google Scholar 

  71. Yang, X. et al. Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorganic Biochem. 167, 36–48 (2017).

    Google Scholar 

  72. Bouasla, N., Abderrahmane, S., Obeizi, Z., Sarah, M. & Saoudi, A. Antimicrobial activity of ZnS and ZnO-TOP nanoparticles against pathogenic bacteria. Chem. Biodivers. 21, e202400724. https://doi.org/10.1002/cbdv.202400724 (2024).

    Google Scholar 

  73. Song, W. & Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules 24(6), 1033 (2019).

    Google Scholar 

  74. Liu, T. L. et al. Cytocompatibility of regenerated silk fibroin film: a medical biomaterial applicable to wound healing. J. Zhejiang Univ. Sci. B 11, 10–16 (2010).

    Google Scholar 

  75. Srikanth, M. et al. In vitro cytotoxicity studies of industrially used common nanomaterials on L929 and 3T3 fibroblast cells. J ISSN 2766, 2276 (2020).

    Google Scholar 

  76. Hens, B. et al. The future of anticancer drugs: A cytotoxicity assessment study of CdSe/ZnS quantum dots. J. Nanotheranostics 1(1), 3 (2020).

    Google Scholar 

  77. Meyer, K., Rajanahalli, P., Ahamed, M., Rowe, J. J. & Hong, Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol. In Vitro 25(8), 1721–1726 (2011).

    Google Scholar 

  78. Nguyen, C. H., Fu, C. C. & Juang, R. S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 202, 413–427 (2018).

    Google Scholar 

  79. Tian, Y. et al. Size-controllable synthesis and enhanced photocatalytic activity of porous ZnS nanospheres. Mater. Lett. 83, 104–107 (2012).

    Google Scholar 

  80. Subramani, T. et al. Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: A strong impact of morphology. Inorganic Chem. Commun. 142, 109709 (2022).

    Google Scholar 

  81. Othman, Z., Sinopoli, A., Mackey, H. R. & Mahmoud, K. A. Efficient photocatalytic degradation of organic dyes by AgNPs/TiO2/Ti3C2T x MXene composites under UV and solar light. ACS Omega 6(49), 33325–33338 (2021).

    Google Scholar 

  82. Khan, S. S. et al. Construction of ZnS QDs decorated gC3N4 nanosheets for enhanced catalytic degradation of Rhodamine B. Ceram. Int. 50(19), 36479–36486 (2024).

    Google Scholar 

  83. Hazarika, B., Bhattacharjee, B. & Ahmaruzzaman, M. Enhanced photocatalytic degradation of brilliant green using g-C3N5/WO3 nanocomposite: a Z-scheme charge transfer approach under visible light irradiation. Inorg. Chem. Commun. 168, 112960 (2024).

    Google Scholar 

  84. Pantoja-Espinoza, J. C., DelaCruz-Alderete, G. A. & Paraguay-Delgado, F. Photocatalytic Degradation of Methylene Blue Dye with g-C3N4/ZnO Nanocomposite Materials Using Visible Light. Catalysts 15(9), 851 (2025).

    Google Scholar 

  85. Wang, F. et al. ZnS/C dual-quantum-dots heterostructural nanofibers for high-performance photocatalytic H2O2 production. ACS Appl. Mater. Interfaces. 16(2), 2606–2613 (2024).

    Google Scholar 

  86. Zhang, J. et al. Delicate construction of Z-scheme heterojunction photocatalysts by ZnS quantum dots wrapped CoWO4 nanoparticles for highly efficient environmental remediation. ACS Appl. Nano Mater. 7(17), 20101–20113 (2024).

    Google Scholar 

  87. Sohel, A. & Singh, S. Photostable selenium-assisted ZnS nanocomposite with efficient visible light photocatalytic activity. Functional Composites Struct. 6(1), 015004 (2024).

    Google Scholar 

  88. Wang, Z., Yang, W. & Wang, Y. Self-trapped exciton and large Stokes shift in pristine and carbon-coated silicon carbide quantum dots. J. Phys Chem C 121(36), 20031–20038 (2017).

    Google Scholar 

Download references