Utilization of Allium peels to improve soil water holding capacity and rice growth under water stress conditions

utilization-of-allium-peels-to-improve-soil-water-holding-capacity-and-rice-growth-under-water-stress-conditions
Utilization of Allium peels to improve soil water holding capacity and rice growth under water stress conditions

References

  1. Hsueh, C. C. et al. Feasibility study of value-added production from onion peel agricultural wastes for circular economy. J. Taiwan. Inst. Chem. Eng. 145, https://doi.org/10.1016/j.jtice.2023.104851 (2023).

  2. Magama, P., Chiyanzu, I. & Mulopo, J. A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresour Technol. Rep. 18, 101031. https://doi.org/10.1016/J.BITEB.2022.101031 (2022).

    Google Scholar 

  3. Koul, B., Yakoob, M. & Shah, M. P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 206, 112285. https://doi.org/10.1016/J.ENVRES.2021.112285 (2022).

    Google Scholar 

  4. FAO. World Food and Agriculture – Statistical Yearbook 2021 (FAO, 2022). https://doi.org/10.4060/cb4477en

  5. Bolaji, I. et al. Multi-criteria decision analysis of agri-food waste as a feedstock for biopolymer production. Resour. Conserv. Recycl. 172, 105671. https://doi.org/10.1016/J.RESCONREC.2021.105671 (2021).

    Google Scholar 

  6. Mounir, R. et al. Unlocking the Power of Onion Peel Extracts: Antimicrobial and Anti-Inflammatory Effects Improve Wound Healing through Repressing Notch-1/NLRP3/Caspase-1 Signaling. Pharmaceuticals (Basel) 16, https://doi.org/10.3390/PH16101379 (2023).

  7. Benítez, V. et al. Characterization of industrial onion wastes (Allium Cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum. Nutr. 66, 48–57. https://doi.org/10.1007/S11130-011-0212-X/TABLES/5 (2011).

    Google Scholar 

  8. Rose, P., Whiteman, M., Moore, P. K. & Yi, Z. Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep. 22, 351–368. https://doi.org/10.1039/B417639C (2005).

    Google Scholar 

  9. Cebin, A. V., Šeremet, D., Mandura, A., Martinić, A. & Komes, D. Onion solid waste as a potential source of functional food ingredients. Eng. Power: Bull. Croatian Acad. Eng. 15, 7–13 (2020).

    Google Scholar 

  10. Azmat, F. et al. Valorization of the phytochemical profile, nutritional composition, and therapeutic potentials of Garlic peel: a concurrent review. Int. J. Food Prop. 26, 2642–2655. https://doi.org/10.1080/10942912.2023.2251713 (2023).

    Google Scholar 

  11. Shahzad, M. et al. Effect of Garlic consumption on hyperlipidemia patients: observational cohort study. J. Popul. Ther. Clin. Pharmacol. 30, 1635–1643. https://doi.org/10.53555/JPTCP.V30I17.2771 (2023).

    Google Scholar 

  12. Falcón-Piñeiro, A. et al. PTS and PTSO, two organosulfur compounds from onion by-products as a novel solution for plant disease and pest management. Chem. Biol. Technol. Agric. 10, 76. https://doi.org/10.1186/s40538-023-00452-1 (2023).

    Google Scholar 

  13. Singiri, J. R., Swetha, B., Ben-Natan, A. & Grafi, G. What worth the Garlic Peel. Int. J. Mol. Sci. 23. https://doi.org/10.3390/ijms23042126 (2022).

  14. Seleiman, M. F. et al. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10, 1–25. https://doi.org/10.3390/PLANTS10020259 (2021).

    Google Scholar 

  15. Biswas, A. et al. Water scarcity: A global hindrance to sustainable development and agricultural production – A critical review of the impacts and adaptation strategies. Camb. Prisms: Water. 3, e4. https://doi.org/10.1017/wat.2024.16 (2025).

    Google Scholar 

  16. Mi, J., Gregorich, E. G., Xu, S., Mclaughlin, N. B. & Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. (2020). https://doi.org/10.1038/s41598-020-75350-9

  17. Prins, F. X., Etale, A., Ablo, A. D. & Thatcher, A. Water scarcity and alternative water sources in South Africa: can information provision shift perceptions? Urban Water J. 20, 1438–1449. https://doi.org/10.1080/1573062X.2022.2026984 (2023).

    Google Scholar 

  18. Quon, H. & Jiang, S. Decision making for implementing non-traditional water sources: a review of challenges and potential solutions. Npj Clean. Water 2023. 6 (1), 6:1–14. https://doi.org/10.1038/s41545-023-00273-7 (2023).

    Google Scholar 

  19. Abdallah, A. M. et al. Conservation agriculture effects on soil water holding capacity and water-Saving varied with management practices and agroecological conditions: A Review. Agronomy 2021. Page 1681. 11, 11:1681. https://doi.org/10.3390/AGRONOMY11091681 (2021).

    Google Scholar 

  20. Williams, A. et al. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: time to invest in soil organic matter? PLoS One. 11, e0160974. https://doi.org/10.1371/JOURNAL.PONE.0160974 (2016).

    Google Scholar 

  21. Lal, R. Soil organic matter and water retention. Agron. J. 112, 3265–3277. https://doi.org/10.1002/AGJ2.20282 (2020).

    Google Scholar 

  22. Libohova, Z. et al. Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National cooperative soil survey characterization database. J. Soil. Water Conserv. 73, 411–421. https://doi.org/10.2489/JSWC.73.4.411 (2018).

    Google Scholar 

  23. Lal, R. Anthropogenic influences on world soils and implications to global food security. Adv. Agron. 93 (SUPPL.), 69–93. https://doi.org/10.1016/S0065-2113(06)93002-8 (2007).

    Google Scholar 

  24. Mohapatra, P. K. & Sahu, B. B. Importance of rice as human Food. Panicle architecture of rice and its relationship with grain filling. ; 1–25. (2022). https://doi.org/10.1007/978-3-030-67897-5_1

  25. Bin Rahman, A. N. M. R. & Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 12, https://doi.org/10.1002/FES3.390 (2023).

  26. Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol (Tokyo). https://doi.org/10.3177/JNSV.65.S2 (2019). 65 Supplement:S2–3.

    Google Scholar 

  27. Mohidem, N. A., Hashim, N., Shamsudin, R. & Che Man, H. Rice for food security: revisiting its Production, Diversity, rice milling process and nutrient content. Agriculture 12, 741. https://doi.org/10.3390/AGRICULTURE12060741 (2022).

    Google Scholar 

  28. Bahnasawy, A. H., El-Haddad, Z. A., El-Ansary, M. Y. & Sorour, H. M. Physical and mechanical properties of some Egyptian onion cultivars. J. Food Eng. 62, 255–261. https://doi.org/10.1016/S0260-8774(03)00238-3 (2004).

    Google Scholar 

  29. Ragheb, E. I. & Helmy, E. M. Behavior of new and promising Egyptian Garlic clones resulting from clonal selection program. J. Plant. Prod. 12, 1255–1260. https://doi.org/10.21608/JPP.2021.209338 (2021).

    Google Scholar 

  30. Chia, P. W., Lim, B. S., Tan, K. C., Yong, F. S. J. & Kan, S. Y. Water extract of onion Peel for the synthesis of bisindolylmethanes. J. King Saud Univ. Sci. 31, 642–647. https://doi.org/10.1016/J.JKSUS.2018.05.029 (2019).

    Google Scholar 

  31. Park, B. B., Yanai, R. D., Sahm, J. M., Ballard, B. D. & Abrahamson, L. P. Wood Ash effects on soil solution and nutrient budgets in a Willow bioenergy plantation. Water Air Soil. Pollut. 159, 209–224. https://doi.org/10.1023/B:WATE.0000049177.60761.37/METRICS (2004).

    Google Scholar 

  32. AOAC International. Official Methods of Analysis, 22nd Edition. (2023).

  33. Loewus, F. A. Improvement in anthrone method for determination of carbohydrates. Anal. Chem. 24, 219. https://doi.org/10.1021/AC60061A050/ASSET/AC60061A050.FP.PNG_V03 (1952).

    Google Scholar 

  34. Massoumi, A. & Cornfield, A. H. A rapid method for determining sulphate. Water Extracts Soils. 7, 22 (1963).

    Google Scholar 

  35. Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  36. Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1 (1999).

    Google Scholar 

  37. Zhishen, J., Mengcheng, T. & Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2 (1999).

    Google Scholar 

  38. Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341. https://doi.org/10.1006/ABIO.1999.4019 (1999).

    Google Scholar 

  39. FAO. Standard operating procedure for soil moisture content by gravimetric method. (2023).

  40. Nigam, A., Gupta, R. & Air Water and soil. Environ. Anal. Lab. Handb. 1–20. https://doi.org/10.1002/9781119724834.CH1 (2020).

  41. Abo-Yousef, M. I. et al. Giza 179 Egyptian rice variety: as a new, early, high-yielding, tolerant to saline, and climate change challenge. J. Agric. Res. 100, 567–588. https://doi.org/10.21608/ejar.2023.196433.1374 (2023).

    Google Scholar 

  42. Metzner, H., Rau, H. & Senger, H. Studies on synchronization of some pigment-deficient Chlorella mutants. Planta 65, 186–194. https://doi.org/10.1007/BF00384998/METRICS (1965).

    Google Scholar 

  43. Barrs, H. & Weatherley, P. A Re-Examination of the relative turgidity technique for estimating water deficits in leaves. Aust J. Biol. Sci. 15, 413. https://doi.org/10.1071/BI9620413 (1962).

    Google Scholar 

  44. Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant. Soil. 39, 205–207. https://doi.org/10.1007/BF00018060/METRICS (1973).

    Google Scholar 

  45. Dhindsa, R. S., Plumb-dhindsa, P. & Thorpe, T. A. Leaf senescence: correlated with increased levels of membrane permeability and lipid Peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. https://doi.org/10.1093/JXB/32.1.93 (1981).

    Google Scholar 

  46. Velikova, V. Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines, Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1. 2000.

  47. Sedlak, J. & Lindsay, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with ellman’s reagent. Anal. Biochem. 25, 192–205. https://doi.org/10.1016/0003-2697(68)90092-4 (1968).

    Google Scholar 

  48. Qiu, R. L., Zhao, X., Tang, Y. T., Yu, F. M. & Hu, P. J. Antioxidative response to cd in a newly discovered cadmium hyperaccumulator. Arabis Paniculata F Chemosphere. 74, 6–12. https://doi.org/10.1016/J.CHEMOSPHERE.2008.09.069 (2008).

    Google Scholar 

  49. Aebi, H. Catalase in vitro. Methods in enzymol. (1984).

  50. Maehly, A. C. & Chance, B. The assay of catalases and peroxidases. Methods Biochem. Anal. 1, 357–424. https://doi.org/10.1002/9780470110171.CH14 (1954).

    Google Scholar 

  51. Beyer, W. F. & Fridovich, I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem. 161, 559–566. https://doi.org/10.1016/0003-2697(87)90489-1 (1987).

    Google Scholar 

  52. Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by Ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880. https://doi.org/10.1093/OXFORDJOURNALS.PCP.A076232 (1981).

    Google Scholar 

  53. Pastore, D. et al. Inhibition by α-Tocopherol and L-Ascorbate of linoleate hydroperoxidation and β-Carotene bleaching activities in durum wheat semolina. J. Cereal Sci. 31, 41–54. https://doi.org/10.1006/JCRS.1999.0278 (2000).

    Google Scholar 

  54. Clarke, J. D. Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harb Protoc. 4 https://doi.org/10.1101/PDB.PROT5177 (2009).

  55. Soliman, E. R. S., El-Shazly, H. H., Börner, A. & Badr, A. Genetic diversity of a global collection of maize genetic resources in relation to their subspecies assignments, geographic origin, and drought tolerance. Breed. Sci. 71, 313–325. https://doi.org/10.1270/jsbbs.20142 (2021).

    Google Scholar 

  56. Chadorshabi, S., Hallaj-Nezhadi, S. & Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 386, 132737. https://doi.org/10.1016/J.FOODCHEM.2022.132737 (2022).

    Google Scholar 

  57. Ullah, H. et al. In vitro bioaccessibility and Anti-Inflammatory activity of a chemically characterized Allium Cepa L. Extract rich in Quercetin derivatives optimized by the design of experiments. Molecules 27, 9065. https://doi.org/10.3390/MOLECULES27249065/S1 (2022).

    Google Scholar 

  58. Lee, B. K. & Jung, Y. S. Allium Cepa extract and Quercetin protect neuronal cells from oxidative stress via PKC- ϵ Inactivation/ERK1/2 activation. Oxid. Med. Cell. Longev. 2016 https://doi.org/10.1155/2016/2495624 (2016).

  59. Masood, S. et al. Antioxidant potential and α-glucosidase inhibitory activity of onion (Allium cepa L.) Peel and bulb extracts. Brazilian J. Biology 83, https://doi.org/10.1590/1519-6984.247168 (2023).

  60. Betti, G., Grant, C., Murray, R. & Research, G. C. S. Research GC-S, 2016‏ undefined. Size of subsoil clods affects soil-water availability in sand–clay mixtures‏. Soil Research 54, 276–290 (2016).

    Google Scholar 

  61. Lavoine, N., Desloges, I., Dufresne, A. & Bras, J. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90, 735–764. https://doi.org/10.1016/J.CARBPOL.2012.05.026 (2012).

    Google Scholar 

  62. Lindh, E. L., Bergenstråhle-Wohlert, M., Terenzi, C., Salmén, L. & Furó, I. Non-exchanging hydroxyl groups on the surface of cellulose fibrils: the role of interaction with water. Carbohydr. Res. 434, 136–142. https://doi.org/10.1016/J.CARRES.2016.09.006 (2016).

    Google Scholar 

  63. Cherednichenko, K. et al. A facile One-Step synthesis of Polystyrene/Cellulose (PS@MFC) biocomposites for the Preparation of hybrid Water-Absorbing sponge Materials. Polymers 2023. Page 4328. 15, 15:4328. https://doi.org/10.3390/POLYM15214328 (2023).

    Google Scholar 

  64. Bhandari, U. et al. Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon 9, https://doi.org/10.1016/J.HELIYON.2023.E13744 (2023).

  65. El-Okkiah, S. A. F. et al. Foliar spray of silica improved water stress tolerance in rice (Oryza sativa L.) cultivars. Front. Plant. Sci. 13, https://doi.org/10.3389/fpls.2022.935090 (2022).

  66. Hussain, H. A. et al. Chilling and drought stresses in crop plants: Implications, cross talk, and potential management opportunities. Front. Plant. Sci. 9, 348835. https://doi.org/10.3389/FPLS.2018.00393/BIBTEX (2018).

    Google Scholar 

  67. Zhou, L. et al. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 338, 269–280. https://doi.org/10.1016/J.GEODERMA.2018.12.014 (2019).

    Google Scholar 

  68. Mishra, S. S., Behera, P. K. & Panda, D. Genotypic variability for drought tolerance-related morpho-physiological traits among Indigenous rice landraces of Jeypore tract of Odisha, India. J. Crop Improv. 33, 254–278. https://doi.org/10.1080/15427528.2019.1579138 (2019).

    Google Scholar 

  69. Zhu, R. et al. Cumulative effects of drought–flood abrupt alternation on the photosynthetic characteristics of rice. Environ. Exp. Bot. 169, 103901. https://doi.org/10.1016/J.ENVEXPBOT.2019.103901 (2020).

    Google Scholar 

  70. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. Plant drought stress: effects, mechanisms and management. Agron. Sustainable Dev. 2009. 29 (1), 29:185–212. https://doi.org/10.1051/AGRO:2008021 (2009).

    Google Scholar 

  71. Mishra, S. S., Behera, P. K., Kumar, V., Lenka, S. K. & Panda, D. Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) landraces of Koraput, India. Physiol. Mol. Biol. Plants. 24, 1035–1046. https://doi.org/10.1007/S12298-018-0606-4 (2018).

    Google Scholar 

  72. Mishra, S. S. & Panda, D. Leaf traits and antioxidant defense for drought tolerance during early growth stage in some popular traditional rice landraces from Koraput, India. Rice Sci. 24, 207–217. https://doi.org/10.1016/J.RSCI.2017.04.001 (2017).

    Google Scholar 

  73. Ifesan, B. O. T. Chemical composition of onion Peel (Allium cepa) and its ability to serve as a preservative in cooked beef. Int. J. Sci. Res. Methodol. 7, 25–34 (2017).

    Google Scholar 

  74. Patil, M., Jana, P. & Murumkar, C. Effect of onion and Garlic Biowaste on germination and growth of microgreens. Int. J. Sci. Rep. 7, 302–305. https://doi.org/10.18203/ISSN.2454-2156.INTJSCIREP20211951 (2021).

    Google Scholar 

  75. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269. https://doi.org/10.1126/SCIENCE.AAZ7614 (2020).

    Google Scholar 

  76. Abdelhameed, R. E. & Metwally, R. A. Role of B. velezensis RaSh2 inoculation on enhancing Cowpea (Vigna unguiculata L.) plants grown under drought conditions. Plant. Growth Regul. https://doi.org/10.1007/s10725-025-01384-6 (2025).

    Google Scholar 

  77. Abdelhameed, R. E., Gahin, H. & Metwally, R. A. Kinetin and arbuscular mycorrhizal fungi: vital regulators of Vicia Faba plantsʼ response and tolerance to drought stress. BMC Plant. Biol. https://doi.org/10.1186/s12870-025-07260-9 (2025).

    Google Scholar 

  78. Lei, D., Li, Y., Yong, L., Shen, Q. & Guo, S. Effects of drought stress on photosynthesis and water status of rice leaves.Chin. J. Rice Sci. 28 65-70 DOI: https://doi.org/10.3969/j.issn.1001-7216.2014.01.009 (2014).

    Google Scholar 

  79. Akram, H. M., Ali, A., Sattar, A., Rehman, H. S. U. & Bibi, A. Impact of water deficit stress on various physiological and agronomic traits of three basmati rice (Oryza sativa L.) cultivars. J. Anim. Plant. Sci. 23, 1415–1423 (2013).

    Google Scholar 

  80. El-Serafy, R. S., El-Sheshtawy, A. N. A. & Dahab, A. A. Fruit Peel soil supplementation induces physiological and biochemical tolerance in Schefflera Arboricola L. Grown under heat conditions. J. Soil. Sci. Plant. Nutr. 23, 1046–1059. https://doi.org/10.1007/S42729-022-01102-5/FIGURES/7 (2023).

    Google Scholar 

  81. Faize, M. et al. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62, 2599–2613. https://doi.org/10.1093/jxb/erq432 (2011).

    Google Scholar 

  82. Juan, C. A., de la Lastra, J. M. P., Plou, F. J. & Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 22. https://doi.org/10.3390/IJMS22094642 (2021).

  83. Upadhyaya, H. & Panda, S. K. Drought stress responses and its management in rice. Advances in rice research for abiotic stress tolerance. ;:177–200. (2019). https://doi.org/10.1016/B978-0-12-814332-2.00009-5

  84. Rezayian, M., Ebrahimzadeh, H. & Niknam, V. Nitric oxide stimulates antioxidant system and osmotic adjustment in soybean under drought stress. J. Soil. Sci. Plant. Nutr. 20, 1122–1132. https://doi.org/10.1007/S42729-020-00198-X (2020).

    Google Scholar 

  85. Rhodes, D. & Samaras, Y. Genetic control of osmoregulation in plants. Cell. Mol. Physiol. Cell. Volume Regul. 347–361. https://doi.org/10.1201/9780367812140-25 (2020).

  86. Abdelhameed, R. E., Soliman, E. R. S., Gahin, H. & Metwally, R. A. Enhancing Drought Tolerance in Malva Parviflora Plants Through Metabolic and Genetic Modulation Using Beauveria Bassiana Inoculation. BMC Plant Biol. 24 662 https://doi.org/10.1186/s12870-024-05340-w (2024).

    Google Scholar 

  87. Vajrabhaya, M., Kumpun, W. & Chadchawan, S. The solute accumulation: the mechanism for drought tolerance in RD23 rice (Oryza sativa L) lines. ScienceAsia 27, 93–97 (2001).

    Google Scholar 

  88. Lum, M. S., Hanafi, M. M., Rafii, Y. M. & Akmar, A. S. N. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J. Anim. Plant. Sci. 24, 1487–1493 (2014).

    Google Scholar 

  89. Hayat, S. et al. Role of proline under changing environments: a review. Plant. Signal. Behav. 7. https://doi.org/10.4161/PSB.21949 (2012).

  90. Fahramand, M., Mahmoody, M., Keykha, A., Noori, M. & Rigi, K. Influence of abiotic stress on proline, photosynthetic enzymes and growth. Int. Res. J. Appl. Basic. Sci. 8, 257–265 (2014).

    Google Scholar 

  91. Bhoomika, K., Pyngrope, S. & Dubey, R. S. Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance. J. Plant. Physiol. 171, 497–508. https://doi.org/10.1016/J.JPLPH.2013.12.009 (2014).

    Google Scholar 

  92. Dey, N., Bhattacharyya, T. & Bhattacharjee, S. Decoding the impact of drought stress induced Redox-Metabolic shift in flag leaf during Grain-Filling stage on kernel aroma quality and productivity in some Indigenous aromatic rice cultivars of West Bengal, India. J. Plant. Growth Regul. 42, 7673–7704. https://doi.org/10.1007/S00344-023-11042-8/METRICS (2023).

    Google Scholar 

  93. Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biology Plants 2017 23:2. 23, 249–268. https://doi.org/10.1007/S12298-017-0422-2 (2017).

    Google Scholar 

  94. Wang, F. Z., Wang, Q., Bin, Kwon, S. Y., Kwak, S. S. & Su, W. A. Enhanced drought tolerance of Transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant. Physiol. 162, 465–472. https://doi.org/10.1016/J.JPLPH.2004.09.009 (2005).

    Google Scholar 

  95. Selote, D. S. & Khanna-Chopra, R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol. Plant. 121, 462–471. https://doi.org/10.1111/J.1399-3054.2004.00341.X (2004).

    Google Scholar 

  96. Gomaa Shehab, G., Kansowa Ahmed, O. & Saad El-Betagi, H. Effects of various chemical agents for alleviation of drought stress in rice plants (Oryza sativa L). Not Bot. Horti Agrobot Cluj Napoca. 38, 139–148. https://doi.org/10.15835/NBHA3813627 (2010).

    Google Scholar 

  97. Li, X., Zhang, L. & Li, Y. Preconditioning alters antioxidative enzyme responses in rice seedlings to water stress. Procedia Environ. Sci. 11 PART C, 1346–1351. https://doi.org/10.1016/J.PROENV.2011.12.202 (2011).

    Google Scholar 

  98. Hasanuzzaman, M. & Fujita, M. Plant oxidative stress: Biology, physiology and mitigation. Plants (Basel). 11. https://doi.org/10.3390/PLANTS11091185 (2022).

  99. Mohamed, H., El-Bassiouny, S., Abdallah, M-S., Bakry, B. A. & Ibrahim, F. M. Effect of orange Peel extract or ascorbic acid on Growth, yield and some biochemical aspects of Quinoa plants under water deficit. Int. J. Pharmtech Res. 9, 86–96 (2016).

    Google Scholar 

  100. Reddy, R. A., Chaitanya, K. V., Jutur, P. P. & Sumithra, K. Differential antioxidative responses to water stress among five mulberry (Morus Alba L.) cultivars. Environ. Exp. Bot. 52, 33–42. https://doi.org/10.1016/J.ENVEXPBOT.2004.01.002 (2004).

    Google Scholar 

  101. Soliman, E. R. S. & Soliman, M. S. A. Diversity assessment by molecular barcoding and seed morphology in Ricinus communis L. Baghdad Sci. J. 18, 708–715. https://doi.org/10.21123/BSJ.2021.18.1(SUPPL.).0708 (2021).

    Google Scholar 

  102. Badr, A. et al. Plant Responses to Induced Genotoxicity and Oxidative Stress by Chemicals. Induced Genotoxicity and Oxidative Stress in Plants. 103–131. (2021). https://doi.org/10.1007/978-981-16-2074-4_4

  103. Dubey, R. K., Upadhyay, G., Singh, V. & Pandey, S. Antioxidant potential and free radical scavenging activity of Parkia roxburghii, G. Don, a lesser known leguminous tree from North East India. South. Afr. J. Bot. 131, 454–461. https://doi.org/10.1016/j.sajb.2020.03.013 (2020).

    Google Scholar 

  104. Whitney, K. D. et al. Experimental drought reduces genetic diversity in the grassland foundation species Bouteloua eriopoda. Oecologia 189, 1107. https://doi.org/10.1007/S00442-019-04371-7 (2019).

    Google Scholar 

Download references