Beyond swimming: emerging parameters for predicting the fertility of mouse spermatozoa

beyond-swimming:-emerging-parameters-for-predicting-the-fertility-of-mouse-spermatozoa
Beyond swimming: emerging parameters for predicting the fertility of mouse spermatozoa
  • Marschall, S., Huffstadt, U., Balling, R. & Hrabě De Angelis, M. Reliable recovery of inbred mouse lines using cryopreserved spermatozoa. Mamm. Genome 10, 773–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Zevnik, B., Jerchow, B. & Buch, T. 3R measures in facilities for the production of genetically modified rodents. Lab Anim. 51, 162–177 (2022).

    Article  Google Scholar 

  • Sztein, J. M., Takeo, T. & Nakagata, N. History of cryobiology, with special emphasis in evolution of mouse sperm cryopreservation. Cryobiology 82, 57–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Luque, G. M. et al. Only a subpopulation of mouse sperm displays a rapid increase in intracellular calcium during capacitation. J. Cell. Physiol. 233, 9685–9700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escoffier, J. et al. Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol. Reprod. 92, 121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostermeier, G. C., Wiles, M. V., Farley, J. S. & Taft, R. A. Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS ONE 3, 1–8 (2008).

    Article  Google Scholar 

  • Tayama, K. et al. Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: a simple and inexpensive method. Reprod. Toxicol. 22, 92–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Tecirlioǧlu, R. T., Hayes, E. S. & Trounson, A. O. Semen collection from mice: electroejaculation. Reprod. Fertil. Dev. 14, 363–371 (2002).

    Article  PubMed  Google Scholar 

  • Moreno-Del Val, G., Muñoz-Robledano, P., Caler, A. J. & Morante, J. A method for multiple sampling mouse sperm in vivo. Biol. Reprod. 108, 197–203 (2023).

    Article  PubMed  Google Scholar 

  • Toth, G. P., Stober, J. A., George, E. L., Read, E. J. & Smith, M. K. Sources of variation in the computer-assisted motion analysis of rat epididymal sperm. Reprod. Toxicol. 5, 487–495 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Cerezales, S., Miranda, A. & Gutiérrez-Adán, A. Comparison of four methods to evaluate sperm DNA integrity between mouse caput and cauda epididymidis. Asian J. Androl. 14, 335–337 (2012).

    Article  PubMed  Google Scholar 

  • Zhou, D., Suzuki, T., Asami, M. & Perry, A. C. F. Caput epididymidal mouse sperm support full development. Dev. Cell 50, 5–6 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Longenecker, G., Cho, K., Khillan, J. S. & Kulkarni, A. B. Cryopreservation protocols for genetically engineered mice. Curr. Protoc. 1, e138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Diercks, A. K., Bürgers, H. F., Schwab, A. & Schenkel, J. Improved assessment of frozen/thawed mouse spermatozoa using fluorescence microscopy. J. Vet. Sci. 13, 315–322 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Horst, G., Maree, L. & Du Plessis, S. S. Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod. Fertil. Dev. 30, 875–888 (2018).

    Article  PubMed  Google Scholar 

  • Bucher, K. et al. Multicolor flow cytometric analysis of cryopreserved bovine sperm: a tool for the evaluation of bull fertility. J. Dairy Sci. 102, 11652–11669 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Graham, J. K. Assessment of sperm quality: a flow cytometric approach. Anim. Reprod. Sci. 68, 239–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Holt, W. V. & Van Look, K. J. W. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory test of semen quality. Reproduction 127, 527–535 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ibănescu, I., Leiding, C. & Bollwein, H. Cluster analysis reveals seasonal variation of sperm subpopulations in extended boar semen. J. Reprod. Dev. 64, 33–39 (2018).

    Article  PubMed  Google Scholar 

  • Johannisson, A., Morrell, J. M. & Ntallaris, T. A combination of biomarkers for predicting stallion sperm fertility. Vet. Res. Commun. 48, 2157–2169 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daigneault, B. W. et al. Enhanced fertility prediction of cryopreserved boar spermatozoa using novel sperm function assessment. Andrology 3, 558–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Sellem, E. et al. Use of combinations of in vitro quality assessments to predict fertility of bovine semen. Theriogenology https://doi.org/10.1016/j.theriogenology.2015.07.035 (2015).

  • Pang, W. et al. Establishment of a male fertility prediction model with sperm RNA markers in pigs as a translational animal model. J. Anim. Sci. Biotechnol. 9, 84 (2022).

  • Pang, W. K. et al. Heat shock protein family D member 1 in boar spermatozoa is strongly related to the litter size of inseminated sows. J. Anim. Sci. Biotechnol. 13, 42 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollwein, H. & Malama, E. Review: evaluation of bull fertility. Functional and molecular approaches. Animal 17, 100795 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Tanghe, S., Van Soom, A., Sterckx, V., Maes, D. & De Kruif, A. Assessment of different sperm quality parameters to predict in vitro fertility of bulls. Reprod. Domest. Anim. 37, 127–132 (2002).

    Article  PubMed  Google Scholar 

  • WHO Laboratory Manual for the Examination and Processing of Human Semen (WHO, 2021).

  • Martinez, G. First-line evaluation of sperm parameters in mice (Mus musculus). Bio Protoc. 12, e4529 (2022).

    PubMed  PubMed Central  Google Scholar 

  • Robb, G. W., Amann, R. P. & Killian, G. J. Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J. Reprod. Fertil. 54, 103–107 (1978).

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. & Li, F. Cryopreservation of single-sperm: where are we today? Reprod. Biol. Endocrinol. 18, 41 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, Y., Xie, W. & Liu, C. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 37–52 (Elsevier, 2010).

  • Stein, P. & Schultz, R. M. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 251–262 (Elsevier, 2010).

  • Li, M. W., Willis, B. J., Griffey, S. M., Spearow, J. L. & Lloyd, K. C. K. Assessment of three generations of mice derived by ICSI using freeze-dried sperm. Zygote 17, 239–251 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuster, C. Sperm concentration determination between hemacytometric and CASA systems: why they can be different. Theriogenology 64, 614–617 (2005).

    Article  PubMed  Google Scholar 

  • Christensen, P., Stryhn, H. & Hansen, C. Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology 63, 992–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Brito, L. F. C. et al. Andrology laboratory review: evaluation of sperm concentration. Theriogenology 85, 1507–1527 (2016).

    Article  PubMed  Google Scholar 

  • Yamamoto, T., Mori, S., Yoneyama, M., Imanishi, M. & Takeuchi, M. Evaluation of rat sperm by flow cytometry: simultaneous analysis of sperm count and sperm viability. J. Toxicol. Sci. 23, 373–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Farrell, P. B. B., Presicce, G. A. A., Brockett, C. C. C. & Foote, R. H. H. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49, 871–879 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Zuvela, E. & Matson, P. Performance of four chambers to measure sperm concentration: results from an external quality assurance programme. Reprod. Biomed. Online 41, 671–678 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hansen, C., Vermeiden, T. & Vermeiden, J. P. W. Comparison of FACSCount AF system, improved Neubauer hemocytometer, Corning 254 photometer, SpermVision, UltiMate and NucleoCounter SP-100 for determination of sperm concentration of boar semen. Theriogenology 66, 2188–2194 (2006).

  • Zinaman, M. J., Uhler, M. L., Vertuno, E., Fisher, S. G. & Clegg, E. D. Evaluation of computer-assisted semen analysis (CASA) with IDENT stain to determine sperm concentration. J. Androl. 17, 288–292 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Tardif, A. L., Farrell, P. B., Trouern-Trend, V., Simkin, M. E. & Foote, R. H. Use of Hoechst 33342 stain to evaluate live fresh and frozen bull sperm by computer-assisted analysis. J. Androl. 19, 201–206 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Firman, R. C., Cheam, L. Y. & Simmons, L. W. Sperm competition does not influence sperm hook morphology in selection lines of house mice. J. Evol. Biol. 24, 856–862 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Goossens, E., De Block, G. & Tournaye, H. Computer-assisted motility analysis of spermatozoa obtained after spermatogonial stem cell transplantation in the mouse. Fertil. Steril. 90, 1411–1416 (2008).

    Article  PubMed  Google Scholar 

  • Weber, K. et al. New method for sperm evaluation by 3-dimensional laser scanning microscopy in different laboratory animal species. Int. J. Toxicol. 33, 353–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Firman, R. C. & Simmons, L. W. Sperm competition and the evolution of the sperm hook in house mice. J. Evol. Biol. 22, 2505–2511 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Yániz, J. L., Soler, C. & Santolaria, P. Computer assisted sperm morphometry in mammals: a review. Anim. Reprod. Sci. 156, 1–12 (2015).

    Article  PubMed  Google Scholar 

  • Taloni, A. et al. Probing spermiogenesis: a digital strategy for mouse acrosome classification. Sci. Rep. 7, 3748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner, B. M. et al. A high-throughput method for unbiased quantitation and categorization of nuclear morphology. Biol. Reprod. 100, 1250–1260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, R. O., Gravance, C. G., Thal, D. M. & Miller, M. G. Automated analysis of toxicant-induced changes in rat sperm head morphometry. Reprod. Toxicol. 8, 521–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, M. V., Bastir, M. & Roldan, E. R. S. Geometric morphometrics of rodent sperm head shape. PLoS ONE 8, e80607 (2013).

    Article  Google Scholar 

  • Van Der Horst, G. & Maree, L. SpermBlue: a new universal stain for human and animal sperm which is also amenable to automated sperm morphology analysis. Biotech. Histochem. 84, 299–308 (2009).

    Article  PubMed  Google Scholar 

  • Kamieniczna, M., Stachowska, E., Augustynowicz, A., Woźniak, T. & Kurpisz, M. K. Human live spermatozoa morphology assessment using digital holographic microscopy. Sci. Rep. 12, 4846 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulkeley, E., Santistevan, A. C., Varner, D. & Meyers, S. Imaging flow cytometry to characterize the relationship between abnormal sperm morphologies and reactive oxygen species in stallion sperm. Reprod. Domest. Anim. 58, 10–19 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Herrera, P., Abonza, V., Sánchez-Contreras, J., Darszon, A. & Guerrero, A. Deep learning-based classification and segmentation of sperm head and flagellum for image-based flow cytometry. Comput. Sist. 27, 1133–1145 (2023).

    Google Scholar 

  • García-Vázquez, F., Gadea, J., Matás, C. & Holt, W. Importance of sperm morphology during sperm transport and fertilization in mammals. Asian J. Androl. 18, 844–850 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stachecki, J. J., Ginsburg, K. A., Leach, R. E. & Armant, D. R. Computer-assisted semen analysis (CASA) of epididymal sperm from the domestic cat. J. Androl. 14, 60–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Aziz, N. et al. Novel association between sperm reactive oxygen species production, sperm morphological defects, and the sperm deformity index. Fertil. Steril. 81, 349–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gravance, G. & Davis, R. O. Analysis (ASMA) in the rabbit. J. Androl. 16, 88–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Sekine, N., Yokota, S. & Oshio, S. Sperm morphology is different in two common mouse strains. BPB Rep. 4, 162–165 (2021).

    Article  Google Scholar 

  • Ohta, H., Sakaide, Y. & Wakayama, T. Age- and substrain-dependent sperm abnormalities in BALB/c mice and functional assessment of abnormal sperm by ICSI. Hum. Reprod. 24, 775–781 (2009).

    Article  PubMed  Google Scholar 

  • Kot, M. C. & Handel, M. A. Binding of morphologically abnormal sperm to mouse egg zonae pellucidae in vitro. Gamete Res. 18, 57–66 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Krzanowska, H. Sperm head abnormalities in relation to the age and strain of mice. J. Reprod. Fertil. 62, 385–392 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Burruel, V. R., Yanagimachi, R. & Whitten, W. K. Normal mice develop from oocytes injected with spermatozoa with grossly misshapen heads. Biol. Reprod. 55, 709–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Kishikawa, H., Tateno, H. & Yanagimachi, R. Chromosome analysis of BALB/c mouse spermatozoa with normal and abnormal head morphology. Biol. Reprod. 61, 809–812 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Prasad, J. K., Srivastava, N. & Ghosh, S. K. Strategies to minimize various stress-related freeze-thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreserv. Biobank 17, 603–612 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Jin, B. et al. The mechanism by which mouse spermatozoa are injured during freezing. J. Reprod. Dev. 54, 265–269 (2008).

    Article  PubMed  Google Scholar 

  • Love, C. C. Modern techniques for semen evaluation. Vet. Clin. North Am. Equine Pract. 32, 531–546 (2016).

    Article  PubMed  Google Scholar 

  • Centola, G. M. Comparison of manual microscopic and computer-assisted methods for analysis of sperm count and motility. Arch. Androl. 36, 1–7 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Broekhuijse, M. L. W. J., Šostarić, E., Feitsma, H. & Gadella, B. M. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 76, 1473–1486 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Amann, R. P. & Waberski, D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17 (2014).

    Article  PubMed  Google Scholar 

  • Finelli, R., Leisegang, K., Tumallapalli, S., Henkel, R. & Agarwal, A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Transl. Androl. Urol. 10, 3069–3079 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellini, C., Dal Bosco, A., Ruggeri, S. & Collodel, G. What is the best frame rate for evaluation of sperm motility in different species by computer-assisted sperm analysis? Fertil. Steril. 96, 24–27 (2011).

    Article  PubMed  Google Scholar 

  • won Choi, J. et al. An assessment tool for computer-assisted semen analysis (CASA) algorithms. Sci. Rep. 12, 16830 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapiro, R. et al. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol. Cell. Biol. 22, 6298–6305 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Spoel, A. C. et al. Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc. Natl Acad. Sci. USA 99, 17173–17178 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris, T., Marquez, B., Suarez, S. & Schimenti, J. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the sun domain-containing family of putative RNA methyltransferases. Biol. Reprod. 77, 376–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Boersma, A. et al. Influence of sperm cryopreservation on sperm motility and proAKAP4 concentration in mice. Reprod Med Biol 21, e12480 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizono, H., Shioda, M., Takeo, T., Irie, T. & Nakagata, N. Decrease of fertilizing ability of mouse spermatozoa after freezing and thawing is related to cellular injury. Biol. Reprod. 71, 973–978 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Szczygiel, M. A., Kusakabe, H., Yanagimachi, R. & Whittingham, D. G. Separation of motile populations of spermatozoa prior to freezing is beneficial for subsequent fertilization in vitro: a study with various mouse strains. Biol. Reprod. 67, 287–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Yildiz, C. et al. Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction 133, 585–595 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sztein, J. M., Farley, J. S. & Mobraaten, L. E. In vitro fertilization with cryopreserved inbred mouse sperm. Biol. Reprod. 63, 1774–1780 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Novo, A. et al. Effect of extender, storage time and temperature on kinetic parameters (CASA) on bull semen samples. Biology 10, 806 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Soler, C. et al. Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility. Reprod. Fertil. Dev. 30, 924–934 (2018).

    Article  PubMed  Google Scholar 

  • Ďuračka, M., Benko, F. & Tvrdá, E. Molecular markers: a new paradigm in the prediction of sperm freezability. Int. J. Mol. Sci. 24, 3379 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Galarza, D. A., López-Sebastián, A., Woelders, H., Blesbois, E. & Santiago-Moreno, J. Two-step accelerating freezing protocol yields a better motility, membranes and DNA integrities of thawed ram sperm than three-steps freezing protocols. Cryobiology 91, 84–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Li, M. W. & Lloyd, K. C. K. DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Sci. Rep. 10, 3833 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saacke, R. G., Dalton, J. C., Nadir, S., Nebel, R. L. & Bame, J. H. Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Anim. Reprod. Sci. 60–61, 663–677 (2000).

    Article  PubMed  Google Scholar 

  • Fernández-Gonzalez, R. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol. Reprod. 78, 761–772 (2008).

    Article  PubMed  Google Scholar 

  • Gawecka, J. E. et al. Mouse zygotes respond to severe sperm DNA damage by delaying paternal DNA replication and embryonic development. PLoS ONE 8, e56385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leem, J., Bai, G. Y. & Oh, J. S. The capacity to repair sperm DNA damage in zygotes is enhanced by inhibiting WIP1 activity. Front. Cell Dev. Biol. 10, 841327 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos-Ibeas, P. et al. Intracytoplasmic sperm injection using DNA-fragmented sperm in mice negatively affects embryo-derived embryonic stem cells, reduces the fertility of male offspring and induces heritable changes in epialleles. PLoS ONE 9, e95625 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Musson, R., Gasior, Ł, Bisogno, S. & Ptak, G. E. DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. Hum. Reprod. Update 28, 376–399 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajski, G. et al. Application of the comet assay for the evaluation of DNA damage in mature sperm. Mutat. Res. Rev. Mutat. Res. 788, 108398 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Sharma, R., Iovine, C., Agarwal, A. & Henkel, R. TUNEL assay—standardized method for testing sperm DNA fragmentation. Andrologia 53, 1–20 (2021).

    Article  Google Scholar 

  • Henkel, R., Hoogendijk, C. F., Bouic, P. J. D. & Kruger, T. F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 42, 305–313 (2010).

    Article  PubMed  Google Scholar 

  • Fernández, J. L. et al. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J. Androl. 24, 59–66 (2003).

    Article  PubMed  Google Scholar 

  • Yurchuk, T. O., Pavlovych, O. V. & Petrushko, M. P. Sperm DNA cryodamage in domestic and farm animals: detection methods and ways of DNA integrity improvement. Probl. Cryobiol. Cryomed. 32, 171–182 (2022).

    Article  Google Scholar 

  • Muratori, M. et al. Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J. Androl. 31, 336–345 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Chatzimeletiou, K. et al. Evaluation of sperm DNA fragmentation using two different methods: TUNEL via fluorescence microscopy, and flow cytometry. Medicina 59, 1313 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Evenson, D. & Jost, L. Sperm chromatin structure assay for fertility assessment. Curr Protoc. Cytom. 13, 7.13.1–7.13.27 (2000).

    Google Scholar 

  • Javed, A., Talkad, M. S. & Ramaiah, M. K. Evaluation of sperm DNA fragmentation using multiple methods: a comparison of their predictive power for male infertility. Clin. Exp. Reprod. Med. 46, 211 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Evenson, D. P. The sperm chromatin structure assay (SCSA) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim. Reprod. Sci. 169, 56–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Pastor, F., Del Rocío Fernández-Santos, M., Domínguez-Rebolledo, Á, Esteso, M. & Garde, J. DNA status on thawed semen from fighting bull: a comparison between the SCD and the SCSA tests. Reprod. Domest. Anim. 44, 424–431 (2009).

    Article  PubMed  Google Scholar 

  • Erenpreisa, J. et al. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A 52, 19–27 (2003).

    Article  PubMed  Google Scholar 

  • Erenpreiss, J., Bars, J., Lipatnikova, V., Erenpreisa, J. & Zalkalns§, J. Comparative study of cytochemical tests for sperm chromatin integrity. J. Androl. 22, 45–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Klaude, M., Eriksson, S., Nygren, J. & Ahnström, G. The comet assay: mechanisms and technical considerations. Mutat. Res. 363, 89–96 (1996).

    Article  PubMed  Google Scholar 

  • Simon, L. & Carrell, D. T. in Spermatogenesis: Methods and Protocols (eds Carrell, D. T. & Aston, K. I.) 137–146 (Humana, 2013); https://doi.org/10.1007/978-1-62703-038-0_13

  • Tarozzi, N., Bizzaro, D., Flamigni, C. & Borini, A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod. Biomed. Online 14, 746–757 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Simon, L. et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum. Reprod. 29, 904–917 (2014).

    Article  CAS  PubMed  Google Scholar 

  • de Boer, P., de Vries, M. & Ramos, L. A mutation study of sperm head shape and motility in the mouse: lessons for the clinic. Andrology 3, 174–202 (2015).

    Article  PubMed  Google Scholar 

  • Agudo-Rios, C. et al. Sperm chromatin status and DNA fragmentation in mouse species with divergent mating systems. Int. J. Mol. Sci. 24, 15954 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bungum, M., Bungum, L. & Giwercman, A. Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J. Androl. 13, 69–75 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Sakkas, D. & Alvarez, J. G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 93, 1027–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Sansing, S. R., Morse, I. S. & Pritchett-Corning, K. R. Mouse sperm cryopreservation and recovery using the I·Cryo Kit. J. Vis. Exp. https://doi.org/10.3791/3713 (2011).

  • Tao, J., Critser, E. S. & Critser, J. K. Evaluation of mouse sperm acrosomal status and viability by flow cytometry. Mol. Reprod. Dev 36, 183–194 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Somfai, T. et al. Simultaneous evaluation of viability and acrosome integrity of mouse spermatozoa using light microscopy. Biotech. Histochem. 77, 117–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Hecht, B. R. & Jeyendran, R. S. The hypo-osmotic swelling test: is it a sperm vitality or a viability assay? F S Sci. 3, 18–20 (2022).

    PubMed  Google Scholar 

  • Check, J. H. et al. The hypoosmotic swelling test as a useful adjunct to the semen analysis to predict fertility potential. Fertil. Steril. 52, 159–161 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Ramu, S. & Jeyendran, R. S. in Methods in Molecular Biology (eds Carrell, D. T. & Aston, K. I.) 21–25 (Springer, 2013).

  • Petrunkina, A. M., Waberski, D., Günzel-Apel, A. R. & Töpfer-Petersen, E. Determinants of sperm quality and fertility in domestic species. Reproduction 134, 3–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Dott, H. M. & Foster, G. C. A technique for studying the morphology of mammalian spermatozoa which are eosinophilic in a differential ‘life-dead’ stain. J. Reprod. Fertil. 29, 443–445 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Kovács, A. & Foote, R. H. Viability and acrosome staining of bull, boar and rabbit spermatozoa. Biotech. Histochem. 67, 119–124 (1992).

    Article  PubMed  Google Scholar 

  • Tartaglione, C. M. & Ritta, M. N. Prognostic value of spermatological parameters as predictors of in vitro fertility of frozen-thawed bull semen. Theriogenology 62, 1245–1252 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Love, C. C. Sperm quality assays: how good are they? The horse perspective. Anim. Reprod. Sci. 194, 63–70 (2018).

    Article  PubMed  Google Scholar 

  • Pintado, B., De La Fuente, J. & Roldan, E. R. S. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J. Reprod. Fertil. 118, 145–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Hallap, T., Nagy, S., Jaakma, U., Johannisson, A. & Rodriguez-Martinez, H. Usefulness of a triple fluorochrome combination Merocyanine 540/Yo-Pro 1/Hoechst 33342 in assessing membrane stability of viable frozen-thawed spermatozoa from Estonian Holstein AI bulls. Theriogenology 65, 1122–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Althouse, G. C. & Hopkins, S. M. Assessment of boar sperm viability using a combination of two fluorophores. Theriogenology 43, 595–603 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Silva, P. F. N. & Gadella, B. M. Detection of damage in mammalian sperm cells. Theriogenology 65, 958–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nunez, R., Murphy, T. F., Huang, H. F. & Barton, B. E. Use of SYBR14, 7-amino-actinomycin D, and JC-1 in assessing sperm damage from rats with spinal cord injury. Cytometry A 61A, 56–61 (2004).

    Article  Google Scholar 

  • Garner, D., Johnson, L., Yue, S., Roth, B. & Haugland, R. Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J. Androl. 85, 620–629 (1994).

    Article  Google Scholar 

  • Garner, D. L. & Johnson, L. A. Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 53, 276–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Nagy, S., Jansen, J., Topper, E. K. & Gadella, B. M. A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Marchetti, C. et al. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum. Reprod. 19, 2267–2276 (2004).

    Article  PubMed  Google Scholar 

  • Gallon, F., Marchetti, C., Jouy, N. & Marchetti, P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil. Steril. 86, 1526–1530 (2006).

    Article  PubMed  Google Scholar 

  • Mukai, C. & Okuno, M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Miki, K. et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc. Natl Acad. Sci. USA 101, 16501–16506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaccagli, M. M. et al. Capacitation-induced mitochondrial activity is required for sperm fertilizing ability in mice by modulating hyperactivation. Front. Cell Dev. Biol. 9, 767161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Córdoba, M., Mora, N. & Beconi, M. T. Respiratory burst and NAD(P)H oxidase activity are involved in capacitation of cryopreserved bovine spermatozoa. Theriogenology 65, 882–892 (2006).

    Article  PubMed  Google Scholar 

  • Ramió-Lluch, L. et al. ‘In vitro’ capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure. Reprod. Domest. Anim. 46, 664–673 (2011).

    Article  PubMed  Google Scholar 

  • Yeste, M. Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85, 47–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Garner, D. L., Thomas, C. A., Joerg, H. W., DeJarnette, J. M. & Marshall, C. E. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 57, 1401–1406 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gillan, L., Evans, G. & Maxwell, W. M. C. Flow cytometric evaluation of sperm parameters in relation to fertility potential. Theriogenology 63, 445–457 (2005).

    Article  PubMed  Google Scholar 

  • Siu, K. K., Serrão, V. H. B., Ziyyat, A. & Lee, J. E. The cell biology of fertilization: gamete attachment and fusion. J. Cell Biol. 220, e202102146 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seol, D. W. et al. Sperm hyaluronidase is critical to mammals’ fertilization for its ability to disperse cumulus–oocyte complex layer. Asian J. Androl. 24, 411–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Martin-Deleon, P. A. Germ-cell hyaluronidases: their roles in sperm function. Int. J. Androl. 34, e306–e318 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Visconti, P. E. et al. Capacitation of mouse spermatozoa pathway. Regulation 1150, 1139–1150 (1995).

    Google Scholar 

  • De La Vega-Beltran, J. L. et al. Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J. Biol. Chem. 287, 44384–44393 (2012).

    Article  PubMed  Google Scholar 

  • Jaiswal, B. S., Cohen-Dayag, A., Tur-Kaspa, I. & Eisenbach, M. Sperm capacitation is, after all, a prerequisite for both partial and complete acrosome reaction. FEBS Lett. 427, 309–313 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, N. & Perry, A. C. F. Piezo-actuated mouse intracytoplasmic sperm injection (ICSI). Nat. Protoc. 2, 296–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Fernández-González, R. et al. Successful ICSI in mice using caput epididymal spermatozoa. Front. Cell Dev. Biol. 7, 346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuller, S. J. & Whittingham, D. G. Capacitation-like changes occur in mouse spermatozoa cooled to low temperatures. Mol. Reprod. Dev. 46, 318–324 (1997).

    CAS  PubMed  Google Scholar 

  • Navarrete, F. A. et al. Biphasic role of calcium in mouse sperm capacitation signaling pathways. J. Cell. Physiol. 230, 1758–1769 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balbach, M. et al. Metabolic changes in mouse sperm during capacitation. Biol. Reprod. 103, 791–801 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodson, S. G., Zhang, Z., Tsuruta, J. K., Wang, W. & O’Brien, D. A. Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol. Reprod. 84, 1207–1215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez, S. S. & Ho, H. C. Hyperactivated motility in sperm. Reprod. Domest. Anim. 38, 119–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Petrunkina, A. & Harrison, R. Fluorescence technologies for evaluating male gamete (dys)function. Reprod. Domest. Anim. 48, 11–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Malama, E. et al. Development of a four-color flow cytometric assay for the assessment of plasma membrane remodeling and cholesterol efflux during bovine sperm capacitation. J. Reprod. Med. Endocrinol. 21, 26 (2024).

    Google Scholar 

  • Grunewald, S., Fitzl, G. & Springsguth, C. Induction of ultra-morphological features of apoptosis in mature and immature sperm. Asian J. Androl. 18, 533–537 (2016).

    Google Scholar 

  • Demchenko, A. P. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 65, 157–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Muratori, M. et al. Annexin V binding and merocyanine staining fail to detect human sperm capacitation. J. Androl. 25, 797–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Gadella, B. M. & Harrison, R. A. P. Capacitation induces cyclic adenosine 3′,5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cell. Biol. Reprod. 67, 340–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. A., Kopf, G. S. & Storey, B. T. Effects of phorbol esters and a diacylglycerol on the mouse sperm acrosome reaction induced by the zona pellucida. Biol. Reprod. 36, 617–627 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, W. M. C. & Johnson, L. A. Chlortetracycline analysis of boar spermatozoa after incubation, flow cytometric sorting, cooling, or cryopreservation. Mol. Reprod. Dev 46, 408–418 (1997).

    CAS  PubMed  Google Scholar 

  • Devlin, D. J. et al. Knockout of mouse receptor accessory protein 6 leads to sperm function and morphology defects. Biol. Reprod. 102, 1234–1247 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferreira, J. J. et al. Increased mitochondrial activity upon CatSper channel activation is required for mouse sperm capacitation. Redox Biol. 48, 102176 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tourzani, D. A. et al. Caput ligation renders immature mouse sperm motile and capable to undergo cAMP-dependent phosphorylation. Int. J. Mol. Sci. 22, 10241 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagimachi, R., Kamiguchi, Y., Mikamo, K., Suzuki, F. & Yanagimachi, H. Maturation of spermatozoa in the epididymis of the Chinese hamster. Am. J. Anat. 172, 317–330 (1985).

    Article  CAS  PubMed  Google Scholar 

  • Zaneveld, L. J., De Jonge, C. J., Anderson, R. A. & Mack, S. R. Human sperm capacitation and the acrosome reaction. Hum. Reprod. 6, 1265–1274 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Chang, M. C. The meaning of sperm capacitation. a historical perspective. J. Androl. 5, 45–50 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Gervasi, M. G. & Visconti, P. E. Chang’s meaning of capacitation: a molecular perspective. Mol. Reprod. Dev 83, 860–874 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Abou-Haila, A. & Tulsiani, D. R. P. Mammalian sperm acrosome: formation, contents, and function. Arch. Biochem. Biophys. 379, 173–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ito, C. & Toshimori, K. Acrosome markers of human sperm. Anat. Sci. Int. 91, 128–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Larson, J. L. & Miller, D. J. Simple histochemical stain for acrosomes on sperm from several species. Mol. Reprod. Dev. 52, 445–449 (1999).

    CAS  PubMed  Google Scholar 

  • Lybaert, P., Danguy, A., Leleux, F., Meuris, S. & Lebrun, P. Improved methodology for the detection and quantification of the acrosome reaction in mouse spermatozoa. Histol. Histopathol. 24, 999–1007 (2009).

    PubMed  Google Scholar 

  • Thomas, C. A., Garner, D. L., DeJarnette, J. M. & Marshall, C. E. Fluorometric assessments of acrosomal integrity and viability in cryopreserved bovine spermatozoa. Biol. Reprod. 56, 991–998 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Petrunkina, A. M. & Harrison, R. A. P. Cytometric solutions in veterinary andrology: developments, advantages, and limitations. Cytometry A 79A, 338–348 (2011).

    Article  Google Scholar 

  • Boe-Hansen, G. B. & Satake, N. An update on boar semen assessments by flow cytometry and CASA. Theriogenology 137, 93–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Yeste, M. et al. The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17 °C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS ONE 9, e90887 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Brum, A. M., Thomas, A. D., Sabeur, K. & Ball, B. A. Evaluation of Coomassie blue staining of the acrosome of equine and canine spermatozoa. Am. J. Vet. Res. 67, 358–362 (2006).

    Article  PubMed  Google Scholar 

  • Carver-Ward, J. A. et al. Pentoxifylline potentiates ionophore (A23187) mediated acrosome reaction in human sperm: flow cytometric analysis using CD46 antibody. Hum. Reprod. 9, 71–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, M., Harris, C. L., Johnson, P. M. & Morgan, B. P. Rat Membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C31. Biol. Reprod. 71, 1374–1383 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kawai, Y., Hata, T., Suzuki, O. & Matsuda, J. The relationship between sperm morphology and in vitro fertilization ability in mice. J. Reprod. Dev. 52, 561–568 (2006).

    Article  PubMed  Google Scholar 

  • Nakao, S., Takeo, T., Watanabe, H., Kondoh, G. & Nakagata, N. Successful selection of mouse sperm with high viability and fertility using microfluidics chip cell sorter. Sci. Rep. 10, 8862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley, K. A. in Methods in Enzymology Vol. 476 (eds Wassarman, P. M. & Soriano, P. M.) 229–250 (Elsevier, 2010).

  • Tomar, A. et al. Epigenetic inheritance of diet-induced and sperm-borne mitochondrial RNAs. Nature 630, 720–727 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hitit, M. & Memili, E. Sperm signatures of fertility and freezability. Anim. Reprod. Sci. 247, 107147 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Bustamante-Filho, I. C., Pasini, M. & Moura, A. A. Spermatozoa and seminal plasma proteomics: too many molecules, too few markers. The case of bovine and porcine semen. Anim. Reprod. Sci. 247, 107075 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Allen, R. L., O’Brien, D. A., Jones, C. C., Rockett, D. L. & Eddy, E. M. Expression of heat shock proteins by isolated mouse spermatogenic cells. Mol. Cell. Biol. 8, 3260–3266 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, A. et al. Identification of the molecular chaperone, heat shock protein 1 (chaperonin 10), in the reproductive tract and in capacitating spermatozoa in the male mouse. Biol. Reprod. 78, 983–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X. G. et al. Association of heat shock protein 70 with motility of frozen-thawed sperm in bulls. Czech J. Anim. Sci. 60, 256–262 (2015).

    Article  Google Scholar 

  • Zhang, X. G. et al. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 70, 164–169 (2015).

    Article  PubMed  Google Scholar 

  • Pardede, B. P., Kusumawati, A., Pangestu, M. & Purwantara, B. Bovine sperm HSP-70 molecules: a potential cryo-tolerance marker associated with semen quality and fertility rate. Front. Vet. Sci. 10, 1167594 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazari, H., Ahmadi, E., Hosseini Fahraji, H., Afzali, A. & Davoodian, N. Cryopreservation and its effects on motility and gene expression patterns and fertilizing potential of bovine epididymal sperm. Vet. Med. Sci. 7, 127–135 (2021).

    Article  CAS  Google Scholar 

  • Yathish, H. M. et al. Profiling of sperm gene transcripts in crossbred (Bos taurus × Bos indicus) bulls. Anim. Reprod. Sci. 177, 25–34 (2017).

    Article  Google Scholar 

  • Wang, M. et al. Cryoprotectants-free vitrification and conventional freezing of human spermatozoa: a comparative transcript profiling. Int. J. Mol. Sci. 23, 3047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo, V. S., Iosa, M. & Antonucci, G. Predicting male infertility using artificial neural networks: a review of the literature. Healthcare 12, 781 (2024).

    Article  Google Scholar 

  • You, J. B. et al. Machine learning for sperm selection. Nat. Rev. Urol. 18, 387–403 (2021).

    Article  PubMed  Google Scholar 

  • Wang, R. et al. Artificial intelligence in reproductive medicine. Reproduction 158, R139–R154 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Castro, R. A., Peña, F. J. & Herickhoff, L. A. Validation of a new multiparametric protocol to assess viability, acrosome integrity and mitochondrial activity in cooled and frozen thawed boar spermatozoa. Cytometry B 102, 400–408 (2022).

    Article  CAS  Google Scholar 

  • Fisher, H. S., Giomi, L., Hoekstra, H. E. & Mahadevan, L. The dynamics of sperm cooperation in a competitive environment. Proc. Biol. Sci. 281, 20140296 (2014).

    PubMed  PubMed Central  Google Scholar