Pucca, M. B. et al. Scorpions are taking over: the silent and escalating public health crisis in Brazil. Front. Public Health 13, 1573767 (2025).
Mabunda, I. G. et al. The geographical distribution of scorpions, implication of venom toxins, envenomation, and potential therapeutics in Southern and Northern Africa. Toxicol. Res. (Camb) 13(4), tfae118 (2024).
Krayem, N. et al. Native and recombinant phospholipases A2 of Scorpio maurus venom glands impair angiogenesis by targeting integrins α5β1 and αvβ3. Int. J. Biol. Macromol. 116, 305–315 (2018).
Ortiz, E. et al. Scorpion venom components as potential candidates for drug development. Toxicon 93, 125–135 (2015).
Ahmadi, S. et al. Scorpion venom: detriments and benefits. Biomedicines 8(5), 118 (2020).
Xia, Z. et al. Scorpion venom peptides: molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol. Res. 197, 106978 (2023).
El-Qassas, J., Abd El-Atti, M. & El-Badri, N. Harnessing the potency of scorpion venom-derived proteins: applications in cancer therapy. Bioresour. Bioprocess. 11(1), 93 (2024).
Khan, S. A. & Ilies, M. A. The phospholipase A2 superfamily: structure, isozymes, catalysis, physiologic and pathologic roles. Int. J. Mol. Sci. 24(2), 1353 (2023).
Murakami, M. & Kudo, I. Phospholipase a2. J. Biochem. 131(3), 285–292 (2002).
Krayem, N. & Gargouri, Y. Scorpion venom phospholipases A2: A minireview. Toxicon 184, 48–54 (2020).
Conde, R. et al. Phospholipin, a novel heterodimeric phospholipase A2 from Pandinus imperator scorpion venom. FEBS Lett. 460(3), 447–450 (1999).
Zamudio, F. Z. et al. The mechanism of inhibition of ryanodine receptor channels by imperatoxin I, a heterodimeric protein from the scorpion Pandinus imperator. J. Biol. Chem. 272(18), 11886–11894 (1997).
Incamnoi, P. et al. Heteromtoxin (HmTx), a novel heterodimeric phospholipase A2 from Heterometrus laoticus scorpion venom. Toxicon 61, 62–71 (2013).
Valdez-Cruz, N. A., Batista, C. V. & Possani, L. D. Phaiodactylipin, a glycosylated heterodimeric phospholipase A2 from the venom of the scorpion Anuroctonus phaiodactylus. Euro. J. Biochem. 271(8), 1453–1464 (2004).
Hariprasad, G. et al. Cloning, sequence analysis and homology modeling of a novel phospholipase A2 from Heterometrus fulvipes (Indian black scorpion) full length research paper. DNA Seq. 18(3), 242–246 (2007).
Hariprasad, G. et al. Structural analysis of a group III Glu62-phospholipase A2 from the scorpion, Mesobuthus tamulus: targeting and reversible inhibition by native peptides. Int. J. Biol. Macromol. 48(3), 423–431 (2011).
Jridi, I. et al. The small subunit of Hemilipin2, a new heterodimeric phospholipase A2 from Hemiscorpius lepturus scorpion venom, mediates the antiangiogenic effect of the whole protein. Toxicon 126, 38–46 (2017).
Jridi, I. et al. Hemilipin, a novel Hemiscorpius lepturus venom heterodimeric phospholipase A2, which inhibits angiogenesis in vitro and in vivo. Toxicon 105, 34–44 (2015).
Salabi, F. & Jafari, H. Whole transcriptome sequencing reveals the activity of the PLA2 family members in Androctonus crassicauda (Scorpionida: Buthidae) venom gland. FASEB J. 38(10), e23658 (2024).
Soltan-Alinejad, P. et al. Molecular characterization and in silico analyses of maurolipin structure as a secretory phospholipase A2 (sPLA2) from venom glands of Iranian scorpio maurus (Arachnida: Scorpionida). J. Trop. Med. 2022(1), 1839946 (2022).
Alrajhi, A. A. et al. Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. New Engl. J. Med. 346(12), 891–895 (2002).
Mukhopadhyay, J. et al. Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World. PloS one 7(5), e35748 (2012).
Firooz, A. et al. Old world cutaneous leishmaniasis in Iran: clinical variants and treatments. J. Dermatol. Treat. 32(7), 673–683 (2021).
Berman, J. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis. 24(4), 684–703 (1997).
Russo, R. R. et al. Expression, purification and virucidal activity of two recombinant isoforms of phospholipase A 2 from Crotalus durissus terrificus venom. Arch. Virol. 164, 1159–1171 (2019).
Hariprasad, G. et al. Group III PLA2 from the scorpion, Mesobuthus tamulus: cloning and recombinant expression in E. coli. Electron. J. Biotechnol. 12(3), 6–7 (2009).
Ventura, S. & Villaverde, A. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24(4), 179–185 (2006).
Xiong, S. et al. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its “oxidizing” mutant. World J. Gastroenterol.: WJG 11(7), 1077 (2005).
Bessette, P.H., et al., Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. of the National Academy of Sciences 96 (24) 13703–13708 (1996)
Ehgartner, D., et al., A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage ΦX174-derived lysis protein E. Applied Microbiology and Biotechnology 101. 2017
Ghosh, S. et al. Method for enhancing solubility of the expressed recombinant proteins in escherichia coli. BioTechniques 37(3), 418–423 (2004).
Harold, E. S. The transcriptional response of Escherichia coli to recombinant protein insolubility. J. Struct. Funct. Genom. 8(1), 27–35 (2007).
Yamaguchi, H. & Miyazaki, M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4(1), 235–251 (2014).
Snyder, R. Basic concepts of the dose-response relationship. In Assessment and management of chemical risks 37–55 (American Chemical Society, 1984).
Vargas, L. J. et al. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 161(4), 341–347 (2012).
Sudharshan, S. and D. Bhadrapura Lakkappa, Antibacterial potential of a basic phospholipase A2 (VRV-PL-VIIIa) from Daboia russelii pulchella (Russell’s viper) venom. The Journal of Venomous Animals and Toxins Including Tropical Diseases 21 (2015)
Sobrinho, J. et al. Antitumoral potential of snake venom phospholipases A2 and synthetic peptides. Curr. Pharm. Biotechnol. 17, 1–1 (2016).
Zieler, H. et al. A snake venom phospholipase A2 blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J. Exp. Biol. 204, 4157–67 (2002).
Moreira, L. et al. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J. Biol. Chem. 277, 40839–43 (2002).
Deregnaucourt, C. & Schrével, J. Bee venom phospholipase A2 induces stage-specific growth arrest of the intraerythrocytic plasmodium falciparum via modifications of human serum components*. J. Biol. Chem. 275(51), 39973–39980 (2000).
Castillo, J. C. Q. et al. In Vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake bothrops asper. Toxins 4(12), 1500–1516 (2012).
Vitorino, K. A. et al. Antimalarial activity of basic phospholipases A2 isolated from Paraguayan Bothrops diporus venom against Plasmodium falciparum. Toxicon: X 8, 100056 (2020).
Terra, A. L. C. et al. Biological characterization of the amazon coral Micrurus spixii snake venom: Isolation of a new neurotoxic phospholipase A2. Toxicon 103, 1–11 (2015).
Grabner, A. N. et al. BmajPLA2-II, a basic Lys49-phospholipase A2 homologue from Bothrops marajoensis snake venom with parasiticidal potential. Int. Biol. Macromol. 102, 571–581 (2017).
Guillaume, C. et al. Anti-Plasmodium properties of group IA, IB, IIA and III secreted phospholipases A2 are serum-dependent. Toxicon 43(3), 311–318 (2004).
Fernandez-Gomez, R. et al. Growth inhibition of trypanosoma cruzi and leishmania donovani infantum by different snake venoms: preliminary identification of proteins from cerastes cerastes venom which interact with the parasites. Toxicon 32(8), 875–882 (1994).
Tempone, A. G. et al. Bothrops moojeni venom kills leishmania spp. with hydrogen peroxide generated by its l-amino acid oxidase. Biochem. Biophys. Res. Commun. 280(3), 620–624 (2001).
Gonçalves, A. et al. Ultrastructural alterations and growth inhibition of trypanosoma cruzi and leishmania major induced by bothrops jararaca venom. Parasitol. Res. 88, 598–602 (2002).
Passero, L. F. D. et al. Comparative studies of the anti-leishmanial activity of three crotalus durissus ssp. venoms. Parasitol. Res. 101(5), 1365–1371 (2007).
Bhattacharya, S. et al. In vivo and in vitro antileishmanial activity of Bungarus caeruleus snake venom through alteration of immunomodulatory activity. Exp. Parasitol. 135(1), 126–133 (2013).
Borges, A. et al. In vitro leishmanicidal activity of Tityus discrepans scorpion venom. Parasitol. Res. 99, 167–173 (2006).
Pereira, D. et al. Leishmanicidal activity of the venoms of the Scorpions Brotheas amazonicus and Tityus metuendus. Braz. J. Biol. 83, e276872 (2023).
Passero, F. et al. The effect of phospholipase A2 from crotalus durissus collilineatus on leishmania (leishmania) amazonensis infection. Parasitol. Res. 102, 1025–33 (2008).
de Barros, N. B. et al. Liposomes containing an ASP49-phospholipase A2 from Bothrops jararacussu snake venom as experimental therapy against cutaneous leishmaniasis. Int. Immunopharmacol. 36, 225–231 (2016).
Nunes, D. et al. BnSP-7 toxin, a basic phospholipase A2 from Bothrops pauloensis snake venom, interferes with proliferation, ultrastructure and infectivity of Leishmania (Leishmania) amazonensis. Parasitology 140, 1–11 (2013).
Peichoto, M. E. et al. A comparative study of the effects of venoms from five rear-fanged snake species on the growth of Leishmania major: Identification of a protein with inhibitory activity against the parasite. Toxicon 58(1), 28–34 (2011).
Loewenstein, Y. et al. Protein function annotation by homology-based inference. Genome Biol. 10, 207 (2009).
Jiménez-Charris, E. et al. Antitumor potential of Pllans–II, an acidic Asp49–PLA2 from Porthidium lansbergii lansbergii snake venom on human cervical carcinoma HeLa cells. Int. J. Biol. Macromol. 122, 1053–1061 (2019).
Azevedo, F. V. P. V. et al. Human breast cancer cell death induced by BnSP-6, a Lys-49 PLA2 homologue from Bothrops pauloensis venom. Int. J. Biol. Macromol. 82, 671–677 (2016).
Rezaei, A. et al. Discovery of leptulipin, a new anticancer protein from the Iranian scorpion Hemiscorpius lepturus. Molecules 27, 2056 (2022).
Paramo, L. et al. Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A(2) from Bothrops asper snake venom – synthetic Lys49 myotoxin II-(115–129)-peptide identifies its bactericidal region. Euro. J. Biochem. / FEBS 253, 452–61 (1998).
Stábeli, R. G. et al. Bothrops moojeni myotoxin-II, a Lys49-phospholipase A2 homologue: an example of function versatility of snake venom proteins. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 142(3), 371–381 (2006).
Nevalainen, T. J., Graham, G. G. & Scott, K. F. Antibacterial actions of secreted phospholipases A2. review. Biochimica et Biophysica Acta (BBA) – Mol. Cell Biol. Lipids 1781(1), 9 (2008).
Barbosa, P. S. F. et al. Renal and antibacterial effects induced by myotoxin I and II isolated from bothrops jararacussu venom. Toxicon 46(4), 376–386 (2005).
Kini, R. M. & Evans, H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27(6), 613–635 (1989).
Rufini, S. et al. PLA2 stimulation of Na+/H+antiport and proliferation in rat aortic smooth muscle cells. Am. J. Physiol.-Cell Physiol.s 277(4), C814–C822 (1999).
Boutrin, M.-C., Foster, H. & Pentreath, V. W. The effects of bee (Apis mellifera) venom phospholipase A2 on Trypanosoma brucei brucei and enterobacteria. Exp. Parasitol. 119, 246–51 (2008).
Ridgley, E., Xiong, Z.-H. & Ruben, L. Reactive oxygen species activate a Ca2+-dependent cell death pathway in the unicellular organism Trypanosoma brucei brucei. Biochem. J. 340(Pt 1), 33–40 (1999).
Taketo, M. M. & Sonoshita, M. Phospolipase A2 and apoptosis. Biochimica et Biophysica Acta (BBA) – Mol. Cell Biol. Lipids 1585(2), 72–76 (2002).
Jenko Pražnikar, Z., Petan, T. & Pungercar, J. A neurotoxic secretory phospholipase A 2 induces apoptosis in motoneuron-like cells. Ann. 0New York Acad. Sci. 1152, 215–24 (2009).
Hiu, J. & Yap, M. Cytotoxicity of snake venom enzymatic toxins: Phospholipase A2 and L-amino acid oxidase. Biochem. Soc. Trans. 48, 719 (2020).
Cedro, R., et al., Cytotoxic and inflammatory potential of a phospholipase A2 from Bothrops jararaca snake venom. Journal of Venomous Animals and Toxins including Tropical Diseases 24. (2018)
Barros, G. et al. In vitro activity of phospholipase A2 and of peptides from Crotalus durissus terrificus venom against amastigote and promastigote forms of Leishmania (L.) infantum chagasi. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 48 (2015).
Marcussi, S. et al. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutat. Res./Genetic Toxicol. Environ. Mutagen. 724(1), 59–63 (2011).
Alvar, J., S. Croft, and P. Olliaro, Chemotherapy in the treatment and control of leishmaniasis In Advances in Parasitology D.H. Molyneux Editor Academic Press 223–274. 2006
Bassetti, M. et al. Amphotericin B lipid complex in the management of Invasive fungal infections in immunocompromised patients. Clin. Drug investing. 31, 745–58 (2011).
Laniado-Laborín, R. & Cabrales-Vargas, M. N. Amphotericin B: side effects and toxicity. Revista Iberoamericana de Micología 26(4), 223–227 (2009).
Fanos, V. & Cataldi, L. Renal transport of antibiotics and nephrotoxicity: a review. J. Chemother. (Florence, Italy) 13, 461–72 (2001).
Stone, N. et al. Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics clinical experience and future directions. Drugs 76, 485 (2016).
Roberts, J. et al. Liposomal formulation decreases toxicity of amphotericin B in vitro and in vivo. Clin. Orthop. Relat. Res. 473, 2262 (2015).
Lima, M. et al. Genotoxic effects of the antileishmanial drug glucantime. Arch. Toxicol. 84, 227–32 (2009).
