References
-
Kriete, A. Bridging biological scales by state–space analysis and modeling using molecular, tissue cytometric and physiological data. Cytom. Part A 69A, 113–116 (2006).
-
Joyce, A. R. & Palsson, B. Ø The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7, 198–210 (2006).
-
Farrell, A., McLoughlin, N., Milne, J. J., Marison, I. W. & Bones, J. Application of Multi-Omics Techniques for Bioprocess Design and Optimization in Chinese Hamster Ovary Cells. J. Proteome Res. 13, 3144–3159 (2014).
-
Bezjak, L. et al. Incorporating RNA-Seq transcriptomics into glycosylation-integrating metabolic network modelling kinetics: Multiomic Chinese hamster ovary (CHO) cell bioreactors. Biotechnol. Bioeng. 118, 1476–1490 (2021).
-
Ali, A. S. et al. Multi-Omics Study on the Impact of Cysteine Feed Level on Cell Viability and mAb Production in a CHO Bioprocess. Biotechnol. J. 14, 1800352 (2019).
-
Kyriakopoulos, S. et al. Kinetic Modeling of Mammalian Cell Culture Bioprocessing: The Quest to Advance Biomanufacturing. Biotechnol. J. 13, 1700229 (2018).
-
Tsao, Y.-S., Condon, R., Schaefer, E., Lio, P. & Liu, Z. Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells. Cytotechnology 37, 189–198 (2001).
-
Meissner, P. et al. Transient gene expression: Recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol. Bioeng. 75, 197–203 (2001).
-
Yasemin Van, H. & Jörn, S. Development of Lentiviral Packaging Cells and Scale Up of Production to Meet the Growing Demand in Cell and Gene Therapy. Curr. Gene Ther. 25, 1–13 (2025).
-
Baldi, L., Hacker, D. L., Adam, M. & Wurm, F. M. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol. Lett. 29, 677–684 (2007).
-
Price, E. et al. What is the real value of omics data? Enhancing research outcomes and securing long-term data excellence. Nucleic Acids Res. 52, 12130–12140 (2024).
-
Khan, K. H. Gene expression in Mammalian cells and its applications. Adv. Pharm. Bull. 3, 257–263 (2013).
-
Yasumura, M. Studies on SV40 in tissue culture. Nihon-Rinsho 21, 175 (1963).
-
Macpherson, I. & Stoker, M. Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology 16, 147–151 (1962).
-
Ham, R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp. Cell Res. 29, 515–526 (1963).
-
Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5. J. Gen. Virol. 36, 59–72 (1977).
-
Fallaux, F. J. et al. New Helper Cells and Matched Early Region 1-Deleted Adenovirus Vectors Prevent Generation of Replication-Competent Adenoviruses. Hum. Gene Ther. 9, 1909–1917 (1998).
-
Jacobs, J. P., Jones, C. M. & Baille, J. P. Characteristics of a Human Diploid Cell Designated MRC-5. Nature 227, 168–170 (1970).
-
Potter, M. & Boyce, C. R. Induction of Plasma-Cell Neoplasms in Strain BALB/c Mice with Mineral Oil and Mineral Oil Adjuvants. Nature 193, 1086–1087 (1962).
-
Sarntivijai, S., Ade, A. S., Athey, B. D. & States, D. J. A bioinformatics analysis of the cell line nomenclature. Bioinformatics 24, 2760–2766 (2008).
-
Pontifical Academy for Life Pontifical Academy for Life Statement: Moral Reflections on Vaccines Prepared from Cells Derived from Aborted Human Foetuses. Linacre Q. 86, 182–187 (2019).
-
Fred, H. L. & Cheng, T. O. Acronymesis: the exploding misuse of acronyms. Tex. Heart Inst. J. 30, 255–257 (2003).
-
Day, R. A. & Gastel, B. How to Write and Publish a Scientific Paper. (Greenwood, 2011).
-
Pisano, M. et al. Laboratory Mice – A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol. 12, 667054 (2021).
-
Bairoch, A. The Cellosaurus, a Cell-Line Knowledge Resource. J. Biomol. Tech. 29, 25–38 (2018).
-
LoPachin, R. M. & Gavin, T. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective. Chem. Res. Toxicol. 27, 1081–1091 (2014).
-
Li, B. et al. Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment. Nat. Commun. 15, 9417 (2024).
-
Kim, J. Y., Kim, Y. G. & Lee, G. M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 93, 917–930 (2012).
-
Xu, X. et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29, 735–741 (2011).
-
Fischer, S., Handrick, R. & Otte, K. The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnol. Adv. 33, 1878–1896 (2015).
-
Rejc, Ž. et al. Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures. Computers Biol. Med. 88, 150–160 (2017).
-
Malm, M. et al. Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins. Metab. Eng. 72, 171–187 (2022).
-
Smiatek, J., Jung, A. & Bluhmki, E. Validation Is Not Verification: Precise Terminology and Scientific Methods in Bioprocess Modeling. Trends Biotechnol. 39, 1117–1119 (2021).
-
Thermo & Fisher, S. Perfusion Terminology: Understanding Key Terms and Concepts in Perfusion Cell Culture, (2016).
-
Zhao, S., Su, C., Lu, Z. & Wang, F. Recent advances in biomedical literature mining. Briefings in Bioinformatics 22 https://doi.org/10.1093/bib/bbaa057 (2020).
-
McGettigan, P. A. Transcriptomics in the RNA-seq era. Curr. Opin. Chem. Biol. 17, 4–11 (2013).
-
Rafols, I., Leydesdorff, L., O’Hare, A., Nightingale, P. & Stirling, A. How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management. Res. Policy 41, 1262–1282 (2012).
-
Clarivate. KeyWords Plus generation, creation, and changes, (2025).
-
Basson, I., Simard, M.-A., Ouangré, Z. A., Sugimoto, C. R. & Larivière, V. The effect of data sources on the measurement of open access: A comparison of Dimensions and the Web of Science. PLOS ONE 17, e0265545 (2022).
-
Suber, P. in Open Access 0 (The MIT Press, 2012).
-
Lin, D. et al. CHOmics: A web-based tool for multi-omics data analysis and interactive visualization in CHO cell lines. PLOS Comput. Biol. 16, e1008498 (2020).
-
Nguyen, M. et al. Mechanistic insights into the biological activity of S-Sulfocysteine in CHO cells using a multi-omics approach. Front. Bioeng. Biotechnol. 11 – 2023 https://doi.org/10.3389/fbioe.2023.1230422 (2023).
-
Demirhan, D. et al. Comparative systeomics to elucidate physiological differences between CHO and SP2/0 cell lines. Sci. Rep. 12, 3280 (2022).
-
Sulaj, E. et al. Quantitative proteomics reveals cellular responses to individual mAb expression and tunicamycin in CHO cells. Appl. Microbiol. Biotechnol. 108, 381 (2024).
-
Chitwood, D. G. et al. Microevolutionary dynamics of eccDNA in Chinese hamster ovary cells grown in fed-batch cultures under control and lactate-stressed conditions. Sci. Rep. 13, 1200 (2023).
-
Huhn, S. et al. Chromosomal instability drives convergent and divergent evolution toward advantageous inherited traits in mammalian CHO bioproduction lineages. iScience 25, 104074 (2022).
-
Dahodwala, H. et al. Increased mAb production in amplified CHO cell lines is associated with increased interaction of CREB1 with transgene promoter. Curr. Res. Biotechnol. 1, 49–57 (2019).
-
Keysberg, C. et al. Exploring the molecular content of CHO exosomes during bioprocessing. Appl. Microbiol. Biotechnol. 105, 3673–3689 (2021).
-
Zamani, L. et al. High Cell Density Perfusion Culture has a Maintained Exoproteome and Metabolome. Biotechnol. J. 13, 1800036 (2018).
-
Yusufi, F. N. K. et al. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. Cell Syst. 4, 530–542.e536 (2017).
-
Lewis, A. M. et al. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process. PLOS ONE 11, e0157111 (2016).
-
Sebastião, M. J. et al. Identification of Mispairing Omic Signatures in Chinese Hamster Ovary (CHO) Cells Producing a Tri-Specific Antibody. Biomedicines 11, 2890 (2023).
-
Do Minh, A. et al. Characterization of Extracellular Vesicles Secreted in Lentiviral Producing HEK293SF Cell Cultures. Viruses 13, 797 (2021).
-
Keysberg, C. et al. Hyperthermic shift and cell engineering increase small extracellular vesicle production in HEK293F cells. Biotechnol. Bioeng. 121, 942–958 (2024).
-
Lin, Y. C., Lu, M., Cai, W. & Hu, W. S. Comparative transcriptomic and proteomic kinetic analysis of adeno-associated virus production systems. Appl Microbiol Biotechnol. 108, 385 (2024).
-
Zehetner, L., Széliová, D., Kraus, B., Hernandez Bort, J. A. & Zanghellini, J. Multi-omics driven genome-scale metabolic modeling improves viral vector yield in HEK293. Metab. Eng. 91, 103–118 (2025).
-
Malm, M. et al. Evolution from adherent to suspension: systems biology of HEK293 cell line development. Sci. Rep. 10, 18996 (2020).
-
Kreuzthaler, M., Brochhausen, M., Zayas, C., Blobel, B. & Schulz, S. Linguistic and ontological challenges of multiple domains contributing to transformed health ecosystems. Front Med (Lausanne) 10, 1073313 (2023).
-
Natukunda, A. & Muchene, L. K. Unsupervised title and abstract screening for systematic review: a retrospective case-study using topic modelling methodology. Syst. Rev. 12,https://doi.org/10.1186/s13643-022-02163-4 (2023).
-
Schwappach, B. Machines like us scientists? : AI tools for mining the scientific literature in basic biomedical science. EMBO Rep. 26, 3709–3713 (2025).
-
Hauser, A. S. The future of reviews: Will LLMs render them obsolete? EMBO Rep. 26, 4397–4401 (2025).
-
Du, J. et al. Use of deep learning-based NLP models for full-text data elements extraction for systematic literature review tasks. Sci. Rep. 15, 19379 (2025).
-
AlRyalat, S. A. S., Malkawi, L. W. & Momani, S. M. Comparing Bibliometric Analysis Using PubMed, Scopus, and Web of Science Databases. JoVE 152, e58494 (2019).
-
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A. & Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. Faseb J. 22, 338–342 (2008).
-
Bar-Ilan, J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics 82, 495–506 (2010).
-
Harzing, A.-W. & Alakangas, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106, 787–804 (2016).
-
López-Illescas, C., de Moya Anegón, F. & Moed, H. F. Comparing bibliometric country-by-country rankings derived from the Web of Science and Scopus: the effect of poorly cited journals in oncology. J. Inf. Sci. 35, 244–256 (2009).
-
Archambault, É, Campbell, D., Gingras, Y. & Larivière, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J. Am. Soc. Inf. Sci. Technol. 60, 1320–1326 (2009).
-
Jiao, C., Li, K. & Fang, Z. How are exclusively data journals indexed in major scholarly databases? An examination of four databases. Sci. Data 10, 737 (2023).
-
Donner, P. Document type assignment accuracy in the Journal Citation Index data of Web of Science. Scientometrics 113, 219–236 (2017).
-
Pesta, B., Fuerst, J. & Kirkegaard, E. O. W. Bibliometric Keyword Analysis across Seventeen Years (2000-2016) of Intelligence Articles. J. Intell. 6 https://doi.org/10.3390/jintelligence6040046 (2018).
-
Callon, M., Courtial, J. P. & Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer Chemistry. Scientometrics 22, 155–205 (1991).
-
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 57, 359–377 (2006).
