Investigating the impact of oxygen concentration on the assembly of human papillomavirus virus like particles

investigating-the-impact-of-oxygen-concentration-on-the-assembly-of-human-papillomavirus-virus-like-particles
Investigating the impact of oxygen concentration on the assembly of human papillomavirus virus like particles

References

  1. Wei, M. et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg. Microbes Infections. 7 (1), 1–12 (2018).

    Google Scholar 

  2. Knipe, D. M. et al. Fields Virology (Lippincott Williams & Wilkins, 2013).

  3. Finnen, R. L., Erickson, K. D., Chen, X. S. & Garcea, R. L. Interactions between papillomavirus L1 and L2 capsid proteins. J. Virol. 77 (8), 4818–4826 (2003).

    Google Scholar 

  4. Combes, J. D. & Franceschi, S. Human papillomavirus genome variants and head and neck cancers: a perspective. Infect. Agents Cancer. 13, 1–7 (2018).

    Google Scholar 

  5. Li, Z. et al. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat. Commun. 9 (1). (2018).

  6. Roden, R. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer. 18 (4), 240–254 (2018).

    Google Scholar 

  7. Gu, Y. et al. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine 35 (35), 4637–4645 (2017).

    Google Scholar 

  8. Li, Z. et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus. MBio 8 (5). https://doi.org/10.1128/mbio (2017). 00787 – 17.

  9. Zhao, Q. et al. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol. J. 9 (1). (2012).

  10. Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G. & Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell. 5 (3), 557–567 (2000).

    Google Scholar 

  11. Roldão, A., Mellado, M. C. M., Castilho, L. R., Carrondo, M. J. & Alves, P. M. Virus-like particles in vaccine development. Expert Rev. Vaccines. 9 (10), 1149–1176 (2010).

    Google Scholar 

  12. Schwarz, T. F. et al. A ten-year study of immunogenicity and safety of the AS04-HPV-16/18 vaccine in adolescent girls aged 10–14 years. Hum. Vaccines Immunotherapeutics. 15 (7–8), 1970–1979 (2019).

    Google Scholar 

  13. Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356 (19), 1928–1943 (2007).

    Google Scholar 

  14. Paavonen, J. et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369 (9580), 2161–2170 (2007).

    Google Scholar 

  15. Vesikari, T. et al. A randomized, double-blind, phase III study of the immunogenicity and safety of a 9-valent human papillomavirus L1 virus-like particle vaccine (V503) versus Gardasil® in 9–15-year-old girls. Pediatr. Infect. Dis. J. 34 (9), 992–998 (2015).

    Google Scholar 

  16. Qiao, Y. L. et al. Efficacy, Safety, and immunogenicity of an Escherichia coli-Produced bivalent human papillomavirus vaccine: an interim analysis of a randomized clinical trial. J. Natl. Cancer Inst. 112 (2), 145–153 (2020).

    Google Scholar 

  17. Zhao, C. et al. Opportunities and challenges for human papillomavirus vaccination in China. Hum. Vaccines Immunotherap. 20 (1), 2329450 (2024).

    Google Scholar 

  18. Aggarwal, S., Agarwal, P. & Singh, A. K. Human papilloma virus vaccines: A comprehensive narrative review. Cancer Treat. Res. Commun. 37, 100780 (2023).

    Google Scholar 

  19. Inglis, S., Shaw, A. & Koenig, S. HPV vaccines: commercial research & development. Vaccine 24, S99–S105 (2006).

    Google Scholar 

  20. Hanslip, S. J., Zaccai, N. R., Middelberg, A. P. & Falconer, R. J. Assembly of human papillomavirus type-16 virus‐like particles: multifactorial study of assembly and competing aggregation. Biotechnol. Prog. 22 (2), 554–560 (2006).

    Google Scholar 

  21. Sapp, M., Volpers, C., Müller, M. & Streeck, R. E. Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J. Gen. Virol. 76 (9), 2407–2412 (1995).

    Google Scholar 

  22. Li, M., Beard, P., Estes, P. A., Lyon, M. K. & Garcea, R. L. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J. Virol. 72 (3), 2160–2167 (1998).

    Google Scholar 

  23. Buck, C. B., Thompson, C. D., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T. Maturation of papillomavirus capsids. J. Virol. 79 (5), 2839–2846 (2005).

    Google Scholar 

  24. Ishii, Y., Tanaka, K. & Kanda, T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology 308 (1), 128–136 (2003).

    Google Scholar 

  25. Wang, J. W. & Roden, R. B. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev. Vaccines. 12 (2), 129–141 (2013).

    Google Scholar 

  26. Bursa, F. et al. Estimation of ELISA results using a parallel curve analysis. J. Immunol. Methods. 486, 112836 (2020).

    Google Scholar 

  27. Aitken, A. & Learmonth, M. Estimation of disulfide bonds using ellman’s reagent. The Protein Protocols Handbook 487–488. (1996).

  28. Thannhauser, T. W., Konishi, Y. & Scheraga, H. A. Analysis for disulfide bonds in peptides and proteins. Methods in Enzymology, (Elsevier, 1987).

  29. Kirnbauer, R. et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. In: Proceedings of the National Academy of Sciences. (1992).

  30. Wang, D. et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nat. Commun. 11 (1), 2841 (2020).

    Google Scholar 

  31. Gonelli, C. A. et al. Immunogenicity of HIV-1-Based Virus-Like particles with increased incorporation and stability of Membrane-Bound Env. Vaccines 9 (3), 239 (2025).

    Google Scholar 

  32. Wang, L. Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expression Purification (2013).

Download references