References
-
Wei, M. et al. N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in Escherichia coli and self-assembly in vitro. Emerg. Microbes Infections. 7 (1), 1–12 (2018).
-
Knipe, D. M. et al. Fields Virology (Lippincott Williams & Wilkins, 2013).
-
Finnen, R. L., Erickson, K. D., Chen, X. S. & Garcea, R. L. Interactions between papillomavirus L1 and L2 capsid proteins. J. Virol. 77 (8), 4818–4826 (2003).
-
Combes, J. D. & Franceschi, S. Human papillomavirus genome variants and head and neck cancers: a perspective. Infect. Agents Cancer. 13, 1–7 (2018).
-
Li, Z. et al. Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nat. Commun. 9 (1). (2018).
-
Roden, R. & Stern, P. L. Opportunities and challenges for human papillomavirus vaccination in cancer. Nat. Rev. Cancer. 18 (4), 240–254 (2018).
-
Gu, Y. et al. Characterization of an Escherichia coli-derived human papillomavirus type 16 and 18 bivalent vaccine. Vaccine 35 (35), 4637–4645 (2017).
-
Li, Z. et al. Crystal structures of two immune complexes identify determinants for viral infectivity and type-specific neutralization of human papillomavirus. MBio 8 (5). https://doi.org/10.1128/mbio (2017). 00787 – 17.
-
Zhao, Q. et al. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol. J. 9 (1). (2012).
-
Chen, X. S., Garcea, R. L., Goldberg, I., Casini, G. & Harrison, S. C. Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell. 5 (3), 557–567 (2000).
-
Roldão, A., Mellado, M. C. M., Castilho, L. R., Carrondo, M. J. & Alves, P. M. Virus-like particles in vaccine development. Expert Rev. Vaccines. 9 (10), 1149–1176 (2010).
-
Schwarz, T. F. et al. A ten-year study of immunogenicity and safety of the AS04-HPV-16/18 vaccine in adolescent girls aged 10–14 years. Hum. Vaccines Immunotherapeutics. 15 (7–8), 1970–1979 (2019).
-
Garland, S. M. et al. Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356 (19), 1928–1943 (2007).
-
Paavonen, J. et al. Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369 (9580), 2161–2170 (2007).
-
Vesikari, T. et al. A randomized, double-blind, phase III study of the immunogenicity and safety of a 9-valent human papillomavirus L1 virus-like particle vaccine (V503) versus Gardasil® in 9–15-year-old girls. Pediatr. Infect. Dis. J. 34 (9), 992–998 (2015).
-
Qiao, Y. L. et al. Efficacy, Safety, and immunogenicity of an Escherichia coli-Produced bivalent human papillomavirus vaccine: an interim analysis of a randomized clinical trial. J. Natl. Cancer Inst. 112 (2), 145–153 (2020).
-
Zhao, C. et al. Opportunities and challenges for human papillomavirus vaccination in China. Hum. Vaccines Immunotherap. 20 (1), 2329450 (2024).
-
Aggarwal, S., Agarwal, P. & Singh, A. K. Human papilloma virus vaccines: A comprehensive narrative review. Cancer Treat. Res. Commun. 37, 100780 (2023).
-
Inglis, S., Shaw, A. & Koenig, S. HPV vaccines: commercial research & development. Vaccine 24, S99–S105 (2006).
-
Hanslip, S. J., Zaccai, N. R., Middelberg, A. P. & Falconer, R. J. Assembly of human papillomavirus type-16 virus‐like particles: multifactorial study of assembly and competing aggregation. Biotechnol. Prog. 22 (2), 554–560 (2006).
-
Sapp, M., Volpers, C., Müller, M. & Streeck, R. E. Organization of the major and minor capsid proteins in human papillomavirus type 33 virus-like particles. J. Gen. Virol. 76 (9), 2407–2412 (1995).
-
Li, M., Beard, P., Estes, P. A., Lyon, M. K. & Garcea, R. L. Intercapsomeric disulfide bonds in papillomavirus assembly and disassembly. J. Virol. 72 (3), 2160–2167 (1998).
-
Buck, C. B., Thompson, C. D., Pang, Y. Y. S., Lowy, D. R. & Schiller, J. T. Maturation of papillomavirus capsids. J. Virol. 79 (5), 2839–2846 (2005).
-
Ishii, Y., Tanaka, K. & Kanda, T. Mutational analysis of human papillomavirus type 16 major capsid protein L1: the cysteines affecting the intermolecular bonding and structure of L1-capsids. Virology 308 (1), 128–136 (2003).
-
Wang, J. W. & Roden, R. B. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev. Vaccines. 12 (2), 129–141 (2013).
-
Bursa, F. et al. Estimation of ELISA results using a parallel curve analysis. J. Immunol. Methods. 486, 112836 (2020).
-
Aitken, A. & Learmonth, M. Estimation of disulfide bonds using ellman’s reagent. The Protein Protocols Handbook 487–488. (1996).
-
Thannhauser, T. W., Konishi, Y. & Scheraga, H. A. Analysis for disulfide bonds in peptides and proteins. Methods in Enzymology, (Elsevier, 1987).
-
Kirnbauer, R. et al. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. In: Proceedings of the National Academy of Sciences. (1992).
-
Wang, D. et al. Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nat. Commun. 11 (1), 2841 (2020).
-
Gonelli, C. A. et al. Immunogenicity of HIV-1-Based Virus-Like particles with increased incorporation and stability of Membrane-Bound Env. Vaccines 9 (3), 239 (2025).
-
Wang, L. Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expression Purification (2013).
