Production of microencapsulated cinnamon extract using spray drying and evaluation of its effects on bread quality

production-of-microencapsulated-cinnamon-extract-using-spray-drying-and-evaluation-of-its-effects-on-bread-quality
Production of microencapsulated cinnamon extract using spray drying and evaluation of its effects on bread quality

References

  1. Yavuz, Z., Kutlu, G. & Tornuk, F. Incorporation of oleaster (Elaeagnus angustifolia L.) flour into white bread as a source of dietary fibers. J. Food Process. Preserv. 46 (11), e17050 (2022).

    Google Scholar 

  2. Düşkün, B. et al. Formulation of Fiber-Enriched Crackers with Oleaster Powder: Effect on Functional, Textural, and Sensory Attributes. Vol. 80(1). 1–8 (Plant Foods for Human Nutrition, 2025).

  3. Essa, M. M. et al. Functional foods and their impact on health. J. Food Sci. Technol. 60 (3), 820–834 (2023).

    Google Scholar 

  4. Kumar, A. et al. Major phytochemicals: recent advances in health benefits and extraction method. Molecules 28 (2), 887 (2023).

    Google Scholar 

  5. Yasar, B., Kutlu, G. & Tornuk, F. Edible flowers as sources of bioactive compounds: determination of phenolic extraction conditions. Int. J. Gastronomy Food Sci. 30, 100618 (2022).

    Google Scholar 

  6. Kutlu, G. & Erol, K. F. An in vitro assessment of the bioactive, cytotoxic, and antidiabetic potential of different parts of tumbleweed (Gundelia tournefortii L). Gıda 50 (1), 28–41 (2025).

    Google Scholar 

  7. Erol, K. F. & Kutlu, G. Assessment of antimicrobial, anti-diabetic, anti-Alzheimer and anti-cancer properties, along with bioaccessibility and bioactive potential of polygonum cognatum Meissn extracts from various cities in Türkiye. Food Bioscience. 63, 105669 (2025).

    Google Scholar 

  8. Spence, C. Cinnamon: the historic spice, medicinal uses, and flavour chemistry. Int. J. Gastronomy Food Sci. 35, 100858 (2024).

    Google Scholar 

  9. Adimas, Z. T. et al. The effect of concentration of cinnamon extract and storage time on physicochemical, microbial and sensory attributes of avocado juice. Appl. Food Res. 4 (2), 100585 (2024).

    Google Scholar 

  10. Seyedahmadi, S. et al. Enhancing the quality of rice-based gluten-free bread using sourdoughs fermented with Lactobacillus fermentum and Lactobacillus plantarum. Sci. Rep. 15 (1), 26543 (2025).

    Google Scholar 

  11. Kutlu, G. et al. Incorporation of madımak (Polygonum Cognatum Meissn.) leaf powder into gluten-free bread formulations: Evaluation of their nutritional, antidiabetic, color, bioactive, textural, and sensory properties. J. Sci. Food Agric. (2025).

  12. Jensen, S. et al. Antioxidants and shelf life of whole wheat bread. J. Cereal Sci. 53 (3), 291–297 (2011).

    Google Scholar 

  13. Demirkan, E. N. et al. Potential use of hazelnut (Corylus Avellana L.) shell powder in muffin production by partial substitution of wheat flour: Color, bioactive, textural, and sensory properties. Eur. Food Sci. Eng. 5 (1), 1–7 (2024).

    Google Scholar 

  14. Li, H. et al. Effect of tea polyphenols on the quality characteristics of fresh wheat noodles in the storage. Int. J. Food Sci. Technol. 55 (6), 2562–2569 (2020).

    Google Scholar 

  15. Xiao, Z. et al. Effect of modified wheat Bran on the structure and digestibility of bread. Shipin Kexue / Food Sci. 42, 39–45 (2021).

    Google Scholar 

  16. Zulkapli, N. H. & Razali, N. F. Comparative study of pomegranate (Punica granatum) Peel and banana (Musa paradisiaca L.) Peel extracts as natural preservative and its antioxidant effect on homemade cake. Progress Eng. Application Technol. 6 (1), 607–613 (2025).

    Google Scholar 

  17. Wang, C. et al. Influence of onion peel extract on the dough characteristics of High-Gluten wheat flour and the quality of bread. Foods 14 (9), 1618 (2025).

    Google Scholar 

  18. Wen, C. et al. Strategic approaches for co-encapsulation of bioactive compounds: technological advances and mechanistic insight. Foods 14 (12), 2024 (2025).

    Google Scholar 

  19. Castejón, N., Luna, P. & Señoráns, F. J. Microencapsulation by spray drying of omega-3 lipids extracted from oilseeds and microalgae: effect on polyunsaturated fatty acid composition. Lwt 148, 111789 (2021).

    Google Scholar 

  20. Razghandi, E. et al. Combined pulsed electric field-ultrasound assisted extraction of Yarrow phenolic-rich ingredients and their nanoliposomal encapsulation for improving the oxidative stability of sesame oil. Ultrason. Sonochem. 110, 107042 (2024).

    Google Scholar 

  21. Fang, Z. & Bhandari, B. Encapsulation of polyphenols–a review. Trends Food Sci. Technol. 21 (10), 510–523 (2010).

    Google Scholar 

  22. Ray, S., Raychaudhuri, U. & Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience. 13, 76–83 (2016).

    Google Scholar 

  23. Meral, R. et al. A Novel Solution to Enhance the Oxidative and Physical Properties of Cookies Using Maltodextrin-Based Nano-Sized Oils as a Fat Substitute (ACS Omega, 2025).

  24. Akbarbaglu, Z. et al. Production, characterization and spray-drying encapsulation of date (Phoenix dactylifera L.) seed protein hydrolysates for bread fortification. J. Food Meas. Charact. 19 (2), 938–951 (2025).

    Google Scholar 

  25. Akbarbaglu, Z. et al. Stabilization of antioxidant thyme-leaves extract (Thymus vulgaris) within biopolymers and its application in functional bread formulation. Future Foods. 9, 100356 (2024).

    Google Scholar 

  26. López-Córdoba, A. et al. Yerba mate antioxidant powders obtained by co-crystallization: stability during storage. J. Food Eng. 124, 158–165 (2014).

    Google Scholar 

  27. Kalajahi, S. G. et al. The enzymatic modification of whey-proteins for spray drying encapsulation of Ginkgo-biloba extract. Int. J. Biol. Macromol. 245, 125548 (2023).

    Google Scholar 

  28. AOAC, Association of Official Analytical Chemists, Official Methods of Analysis of the Association of Official Analytical Chemists. Ed. 18th Ed. (AOAC Press, 2006).

  29. Goula, A. M. & Adamopoulos, K. G. Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. J. Food Eng. 66 (1), 35–42 (2005).

    Google Scholar 

  30. Cano-Chauca, M. et al. Effect of the Carriers on the Microstructure of Mango Powder Obtained by Spray Drying and its Functional Characterization .Vol. 6(4). 420–428 (Innovative Food Science & Emerging Technologies, 2005).

  31. Tsatsop, R. K. T. et al. Microencapsulation using spray drying of anthoxyanins from Lannea microcarpa (African grape) fruits juice with pyrodextrin from sweet potato starch. Discover Chem. 2 (1), 5 (2025).

    Google Scholar 

  32. de Barros Fernandes, R. V., Borges, S. V. & Botrel, D. A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polymers 101, 524–532 (2014).

  33. Capannesi, C. et al. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chem. 71 (4), 553–562 (2000).

    Google Scholar 

  34. Tan, S. P. et al. Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technol. 281, 65–75 (2015).

    Google Scholar 

  35. Hosseini, S. M. et al. Optimization of antioxidant extraction process from corn meal using pulsed electric field-subcritical water. J. Food Process. Preserv. 45 (6), e15458 (2021).

    Google Scholar 

  36. Razghandi, E. et al. Application of pulsed electric field-ultrasound technique for antioxidant extraction from yarrow: ANFIS modeling and evaluation of antioxidant activity. J. Food Process. Preserv. 2024 (1), 2951718 (2024).

    Google Scholar 

  37. Roby, M. H. H. et al. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 43, 827–831 (2013).

    Google Scholar 

  38. Gharekhani, M. et al. Sourdoughs fermented by autochthonous Lactobacillus strains improve the quality of gluten-free bread. Food Sci. Nutr. 9 (11), 6372–6381 (2021).

    Google Scholar 

  39. Allahyari, N. et al. The effect of different formulations and baking conditions on the physicochemical properties of gluten-free cakes. Appl. Food Res. 101301, p (2025).

    Google Scholar 

  40. Shahid, M. Z. et al. Antioxidant capacity of cinnamon extract for palm oil stability. Lipids Health Dis. 17 (1), 116 (2018).

    Google Scholar 

  41. Liu, X. et al. Accurate determination of moisture content in flavor microcapsules using headspace gas chromatography. Polymers 14 (15), 3002 (2022).

    Google Scholar 

  42. Mangope, K., Kaseke, T. & Fawole, O. A. Microencapsulation and Characterization of Pomegranate Seed Oil Using Gum Arabic and Maltodextrin Blends for Functional Food Applications. Vol. 12(11). 9252–9267 (Food Science & Nutrition, 2024).

  43. Deng, W. et al. Stability of purple corn anthocyanin encapsulated by maltodextrin, and its combinations with gum Arabic and Whey protein isolate. Foods 12 (12), 2393 (2023).

    Google Scholar 

  44. Bagdat, E. S., Kutlu, G. & Tornuk, F. The effect of free and encapsulated probiotic bacteria on some physicochemical, microbiological, and textural properties of apricot leather (pestil) during storage. J. Food Sci. 89 (8), 4688–4703 (2024).

    Google Scholar 

  45. Zahara, I. A., Ulfa, S. M. & Safitri, A. Comparative Analysis of Different Natural Polymers as Coating Agents for Freeze-Dried Microencapsulation of Cosmos Caudatus Kunth Compounds. Vol. 2024(1). 6833341 (The Scientific World Journal, 2024).

  46. Díaz-Montes, E. Wall materials for encapsulating bioactive compounds via spray-drying: A review. Polymers 15 (12), 2659 (2023).

    Google Scholar 

  47. Malekizadeh, N. et al. Effects of different concentrations of maltodextrin and drying temperatures of spray drying process on physicochemical properties of encapsulated Sumac extract. Iran. Food Sci. Technol. Res. J. 14 (2), 321–334 (2018).

    Google Scholar 

  48. Azkiyah, L. et al. The effect of wall materials and drying methods on the encapsulation sardinella Lemuru smart flavor. Indonesian Food Sci. Technol. J. 8 (1), 60–67 (2024).

    Google Scholar 

  49. Xin, X. et al. Effects of spray-drying and freeze-drying on bioactive and volatile compounds of smoke powder food flavouring. Food Bioprocess Technol. 15 (4), 785–794 (2022).

    Google Scholar 

  50. Sun, X. et al. Microencapsulation of Tangeretin in a citrus pectin mixture matrix. Foods 9 (9), 1200 (2020).

    Google Scholar 

  51. George, T. T. et al. Characterization of Moringa Oleifera leaf powder extract encapsulated in maltodextrin and/or gum arabic coatings. Foods 10 (12), 3044 (2021).

    Google Scholar 

  52. Sarabandi, K. et al. Application of gum arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int. J. Biol. Macromol. 140, 59–68 (2019).

    Google Scholar 

  53. Zolqadri, R. et al. Microencapsulated red-garlic peptides with biopolymers: influence on the ACE-inhibitory, biological activity, textural structures, and sensory properties of pan-breads. Future Foods. 11, 100550 (2025).

    Google Scholar 

  54. Choudhury, N., Meghwal, M. & Das, K. Microencapsulation: an overview on concepts, methods, properties and applications in foods. Food Front. 2 (4), 426–442 (2021).

    Google Scholar 

  55. Saavedra-Leos, Z. et al. Technological application of maltodextrins according to the degree of polymerization. Molecules 20 (12), 21067–21081 (2015).

    Google Scholar 

  56. Siti, A. et al. Microencapsulation of Seafood Flavor Enhancers from Indonesian Brown Seaweed with Maltodextrin, Arabic Gum, and β-Cyclodextrin. (2023).

  57. González-Ocampo, H. et al. Microcapsules carriers of phenolic extracts of Maclura tinctoria (L) D. Don ex Steud with/without fish oil: potential additive in commercial aquafeeds. Food Chem. Adv. 9, 101101 (2025).

    Google Scholar 

  58. Mohd Nawi, N., Muhamad, I. I., Mohd, A. & Marsin The Physicochemical Properties of Microwave-Assisted Encapsulated Anthocyanins from Ipomoea Batatas as Affected by Different Wall Materials. Vol. 3(2). 91–99 (Food Science & Nutrition, 2015).

  59. Tomsone, L. et al. Microencapsulation of horseradish (Armoracia rusticana L.) juice using spray-drying. Foods 9 (9), 1332 (2020).

    Google Scholar 

  60. Zhang, Z. H. et al. The effect of different wall materials on the physicochemical properties and antioxidant activity of pomegranate peel polyphenols (PPP) microcapsules. Int. J. Biol. Macromol. 298, 139958 (2025).

    Google Scholar 

  61. Sukri, N. et al. Effect of maltodextrin and Arabic gum ratio on physicochemical characteristic of spray dried propolis microcapsules. Int. J. Food Eng. 17 (2), 159–165 (2021).

    Google Scholar 

  62. Xiao, Z. et al. Maltodextrin as wall material for microcapsules: A review. Carbohydr. Polym. 298, 120113 (2022).

    Google Scholar 

  63. Kang, S. et al. Development and evaluation of gum arabic-based antioxidant nanocomposite films incorporated with cellulose nanocrystals and fruit peel extracts. Food Packaging Shelf Life. 30, 100768 (2021).

    Google Scholar 

  64. Akdeniz, B. & Şahin, S. The Effects of Maltodextrin and Gum Arabic on Encapsulation of Onion Skin Phenolic Compounds. (2017).

  65. Mutavski, Z. et al. Stabilization and preservation of bioactive compounds in black Elderberry by-product extracts using maltodextrin and gum arabic via spray drying. Foods 14 (5), 723 (2025).

    Google Scholar 

  66. Lee, J., Taip, F. & Abdullah, Z. Effectiveness of additives in spray drying performance: a review. Food Res. 2 (6), 486–499 (2018).

    Google Scholar 

  67. Mohammed, N. K. et al. Spray drying for the encapsulation of oils—A review. Molecules 25 (17), 3873 (2020).

    Google Scholar 

  68. Saberi, M. et al. Evaluation of the quality properties of grape pomace and flaxseed oil microcapsules stabilized with different ratios of maltodextrin and gum tragacanth. Ournal Food Sci. Technol. (Iran) 20(139) (2023).

  69. Medina-Jaramillo, C. & López-Córdoba, A. Enhancing the physicochemical, thermal, and technological properties of freeze-dried Welsh onion leaf juice: influence of maltodextrin and gum arabic as carrier agents. Polymers 17 (6), 801 (2025).

    Google Scholar 

  70. Robert, P. et al. Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. Int. J. Food Sci. Technol. 45 (7), 1386–1394 (2010).

    Google Scholar 

  71. Tolun, A., Altintas, Z. & Artik, N. Microencapsulation of grape polyphenols using maltodextrin and gum arabic as two alternative coating materials: development and characterization. J. Biotechnol. 239, 23–33 (2016).

    Google Scholar 

  72. Sarabandi, K. et al. Effect of different carriers on microstructure and physical characteristics of spray dried apple juice concentrate. J. Food Sci. Technol. 55 (8), 3098–3109 (2018).

    Google Scholar 

  73. Zhu, J. et al. Recent progress in microencapsulation technology and its applications in petroleum industry. J. Mol. Liq. 407, 125162 (2024).

    Google Scholar 

  74. Akbarbaglu, Z. et al. Effect of maltodextrin and gum arabic carriers on the physicochemical properties and antioxidant activity of spraydried casein hydrolysates. Iran. J. Food Sci. Technol. 17(107), 131–145 (2021).

  75. Sendri, N. et al. Valorization of red cabbage pomace for stabilization of anthocyanins in rhododendron arboreum. Ind. Crops Prod. 187, 115371 (2022).

    Google Scholar 

  76. Afshari, K. et al. Effect of microencapsulated date pit (Phoenix dactylifera L.) extract on staling and organoleptic properties of baguette bread. J. Food Sci. Technol. 20 (144), 2008–8787 (2024) .

  77. Pasrija, D. et al. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT-Food Sci. Technol. 64 (1), 289–296 (2015).

    Google Scholar 

  78. Chen, Y. et al. Micro-computed tomography study on bread dehydration and structural changes during ambient storage. J. Food Eng. 296, 110462 (2021).

    Google Scholar 

  79. Ghasemi, L. et al. The effects of encapsulated probiotic bacteria on the physicochemical properties, staling, and viability of probiotic bacteria in gluten-free bread. J. Food Process. Preserv. 46 (3), e16359 (2022).

    Google Scholar 

  80. Bińkowska, W. et al. Utilization of microencapsulated polyphenols to enhance the bioactive compound content in whole grain bread: recipe optimization. Appl. Sci. 14 (22), 10156 (2024).

    Google Scholar 

  81. Wyrwisz, J., Moczkowska-Wyrwisz, M. & Kurek, M. A. Modeling of texture and starch retrogradation of high-in-fiber bread using response surface methodology. Appl. Sci. 14 (24), 11603 (2024).

    Google Scholar 

  82. Sehn, G. A. R. & Steel, C. J. Staling kinetics of whole wheat pan bread. J. Food Sci. Technol. 57 (2), 557–563 (2020).

    Google Scholar 

  83. Schefer, S., Oest, M. & Rohn, S. Interactions between phenolic acids, proteins, and carbohydrates—Influence on dough and bread properties. Foods 10 (11), 2798 (2021).

    Google Scholar 

  84. Lim, H. S. et al. Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem. 124 (4), 1577–1582 (2011).

    Google Scholar 

  85. Nouska, C. et al. Physicochemical characteristics, antioxidant properties, aroma profile, and sensory qualities of value-added wheat breads fortified with post-distillation solid wastes of aromatic plants. Foods 12 (21), 4007 (2023).

    Google Scholar 

  86. Lachowicz, S., Świeca, M. & Pejcz, E. Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem. 338, 128026 (2021).

    Google Scholar 

  87. Costa, N. H. B. et al. Incorporation of pomegranate (Punica granatum) extract enhanced the concentration of bioactive compounds and shelf life of bread. Food Sci. Nutr. 13(7), e70690 (2025).

  88. Bagale, U. et al. Ultrasound-assisted stable curcumin nanoemulsion and its application in bakery product. Int. J. Food Sci. 2022 (1), 4784794 (2022).

    Google Scholar 

  89. Yolcu, Z. et al. Alternative plant-based gluten-free sourdough pastry snack production by using beetroot and legumes: characterization of physical and sensorial attributes. ACS Omega. 9 (17), 19451–19460 (2024).

    Google Scholar 

  90. Torgbo, S. et al. Ohmic heating extraction and characterization of Rambutan (Nephelium lappaceum L.) Peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread Preparation. Food Chem. 382, 132332 (2022).

    Google Scholar 

  91. Guiné, R. P. Textural properties of bakery products: A review of instrumental and sensory evaluation studies. Appl. Sci. 12 (17), 8628 (2022).

    Google Scholar 

  92. Shori, A. B., Kee, L. A. & Baba, A. S. Total phenols, antioxidant activity and sensory evaluation of bread fortified with spearmint. Arab. J. Sci. Eng. 46 (6), 5257–5264 (2021).

    Google Scholar 

  93. Kerbab, K. et al. Nutritional composition, physicochemical properties, antioxidant activity, and sensory quality of matricaria chamomilla-enriched wheat bread. Foods 14 (5), 838 (2025).

    Google Scholar 

Download references