References
-
Syamsunarno, M. R. A., Safitri, R. & Kamisah, Y. Protective effects of caesalpinia Sappan Linn. And its bioactive compounds on cardiovascular organs. Front. Pharmacol. 12, 725745. https://doi.org/10.3389/fphar.2021.725745 (2021).
-
Bae, I. K., Min, H. Y., Han, A. R., Seo, E. K. & Lee, S. K. Suppression of lipopolysaccharide-induced expression of inducible nitric oxide synthase by Brazilin in RAW 264.7 macrophage cells. Eur. J. Pharmacol. 513 (3), 237–242. https://doi.org/10.1016/j.ejphar.2005.03.011 (2005).
-
Malik, S., Muhammad, K. & Waheed, Y. Nanotechnology: A revolution in modern industry. Molecules 28, 661. https://doi.org/10.3390/molecules28020661 (2023).
-
Sattari, M., Molazemhosseini, A., Naimi-Jamal, M. R. & Khavandi, A. Nonisothermal crystallization behavior and mechanical properties of PEEK/SCF/nano-SiO2 composites. Mater. Chem. Phys. 147, 942–953. https://doi.org/10.1016/j.matchemphys.2014.06.041 (2014).
-
Oh, S. et al. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. U S A. 106, 2130–2135. https://doi.org/10.1073/pnas.0813200106 (2009).
-
Ogata, K., Sutter, E., Zhu, X. & Hofmann, S. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires. Nanotechnology 22, 365305. https://doi.org/10.1088/0957-4484/22/36/365305 (2011).
-
Pandiyan, I. et al. Antioxidant, anti-inflammatory activity of thymus vulgaris-mediated selenium nanoparticles: an in vitro study. J. Conserv. Dent. 25, 241–245. https://doi.org/10.4103/JCD.JCD_369_21 (2022).
-
Wang, H., Qiao, X., Chen, J., Wang, X. & Ding, S. Mechanisms of PVP in the Preparation of silver nanoparticles. Mater. Chem. Phys. 94, 449–453. https://doi.org/10.1016/j.matchemphys.2005.05.005 (2005).
-
Suresh, U. et al. Tackling the growing threat of dengue: phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562. https://doi.org/10.1007/s00436-015-4339-9 (2015).
-
Adeleke, J. T. et al. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 455, 195–200. https://doi.org/10.1016/j.apsusc.2018.05.184 (2018).
-
Fang, Q., Sun, Q., Ge, J., Wang, H. & Qi, J. Multidimensional engineering of nanoconfined catalysis: frontiers in Carbon-Based energy conversion and utilization. Catalysts 15, 477. https://doi.org/10.3390/catal15050477 (2025).
-
Shi, S. et al. Chemical characterization of extracts of leaves of Kadsua coccinea (Lem.) AC Sm. by UHPLC-Q-Exactive orbitrap mass spectrometry and assessment of their antioxidant and anti-inflammatory activities. Biomed. Pharmacother. 149, 112828. https://doi.org/10.1016/j.biopha.2022.112828 (2022).
-
Haq, A. U. et al. Removal of Butachlor from aqueous solution using cantaloupe seed shell powder: kinetic, equilibrium and thermodynamic studies. Int. J. Environ. Sci. Technol. 16, 1–14. https://doi.org/10.1007/s13762-018-1992-4 (2018).
-
Ghaffar, A. et al. Arsenic and copper sulfate in combination causes testicular and serum biochemical changes in white leghorn cockerels. Pak Vet. J. 37, 4 (2017).
-
Solmaz, S. K., Birgül, A., Üstün, G. E. & Yonar, T. Colour and COD removal from textile effluent by coagulation and advanced oxidation processes. Color. Technol. 122, 102–109. https://doi.org/10.1111/j.1478-4408.2006.00016.x (2006).
-
Adhikari, S., Mandal, S., Sarkar, D., Kim, D. H. & Madras, G. Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl. Surf. Sci. 420, 472–482. https://doi.org/10.1016/j.apsusc.2017.05.191 (2017).
-
Chung, K. T., Fulk, G. E. & Andrews, A. W. Mutagenicity testing of some commonly used dyes. Appl. Environ. Microbiol. 142, 641–648. https://doi.org/10.1128/aem.42.4.641-648.1981 (1981).
-
Sharma, K. P. et al. A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69, 48–54. https://doi.org/10.1016/j.chemosphere.2007.04.086 (2007).
-
Dautremepuits, C., Paris-Palacios, S., Betoulle, S. & Vernet, G. Modulation in hepatic and head kidney parameters of carp (Cyprinus Carpio L.) induced by copper and Chitosan. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 137, 325–333. https://doi.org/10.1016/j.cca.2004.03.005 (2004).
-
Borah, S. Effect of petroleum oil on biochemical constituents and enzyme activity in kidney and liver tissues of fresh water teleost fish, heteropneustes fossilis. J. Nat. Environ. Pollut Technol. 19, 81–84 (2005).
-
Rupa, E. J., Anandapadmanaban, G., Mathiyalagan, R. & Yang, D. C. Synthesis of zinc oxide nanoparticles from immature fruits of rubus Coreanus and its catalytic activity for degradation of industrial dye. Optik 172, 1179–1186. https://doi.org/10.1016/j.ijleo.2018.07.115 (2018).
-
Diallo, A., Manikandan, E., Rajendran, V. & Maaza, M. Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. J. Alloys Compd. 681, 561–570. https://doi.org/10.1016/j.jallcom.2016.04.200 (2016).
-
Holkar, C. R., Jadhav, A. J. & Pinjari, D. V. A critical review on the possible remediation of sediment in cocoa/coffee flavored milk. Trends Food Sci. Technol. 86, 199–208. https://doi.org/10.1016/j.tifs.2019.02.035 (2019).
-
SahooSK, ParveenS & PandaJJ The present and future of nanotechnology in human health care. Nanomedicine 3, 20–31. https://doi.org/10.1016/j.nano.2006.11.008 (2007).
-
Sivasankarapillai, V. S. et al. One-pot green synthesis of ZnO nanoparticles using scoparia dulcis plant extract for antimicrobial and antioxidant activities. Appl. Nanosci. 13, 1–11. https://doi.org/10.1007/s13204-022-02610-7 (2022).
-
Ahmad, W. & Kalra, D. Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using euphorbia Hirta leaf extract. J. King Saud Univ. Sci. 32, 2358–2364. https://doi.org/10.1016/j.jksus.2020.03.014 (2020).
-
Ungcharoenwiwat, P., Thaweesuwanasak, M., Kanzaki, H. & Nitoda, T. Antibacterial and antioxidant activities, lethality assay and chemical profile in crude extract of Biancaea Sappan (L.) Tod. For anti-Vibrio agent. King Saud Univ. Sci. 35, 102594. https://doi.org/10.1016/j.jksus.2023.102594 (2023).
-
Nirmal, N. P. & Panichayupakaranant, P. Antioxidant, antibacterial, and anti-inflammatory activities of standardized brazilin-rich Caesalpinia sappan extract. Pharm. Biol. 53, 1339–1343. https://doi.org/10.3109/13880209.2014.982295 (2015).
-
Abdelbaky, A. S., Abd El-Mageed, T. A., Babalghith, A. O., Selim, S. & Mohamed, A. M. H. A. Green synthesis and characterization of ZnO nanoparticles using pelargonium odoratissimum (L.) aqueous leaf extract and their Antioxidant, antibacterial and Anti-inflammatory activities. Antioxidants 11 (8), 1444. https://doi.org/10.3390/antiox11081444 (2022).
-
Ghosh, G. et al. GC-MS analysis of bioactive compounds in the methanol extract of clerodendrum viscosum leaves. Pharmacognosy Res. 7, 110–113. https://doi.org/10.4103/0974-8490.147223 (2015).
-
Faisal, S. et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of myristica fragrans: their characterizations and biological and environmental applications. ACS Omega. 6, 9709–9722. https://doi.org/10.1021/acsomega.1c00310 (2021).
-
Vera, J. et al. Antioxidant activity as an indicator of the efficiency of plant Extract-Mediated synthesis of zinc oxide nanoparticles. Antioxidants 12, 784. https://doi.org/10.3390/antiox12040784 (2023).
-
El-Sayed, S. M., El-Sayed, H. S., Ibrahim, O. A. & Youssef, A. M. Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on roselle calyx extract for Ras cheese coating. Carbohydr. Polym. 239, 116234. https://doi.org/10.1016/j.carbpol.2020.116234 (2020).
-
Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493 (1996).
-
Sharma, O. P. & Bhat, T. K. DPPH antioxidant assay revisited. Food Chem. 113, 1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008 (2009).
-
Joseph, J., Bindhu, A. R. & Aleykutty, N. A. In vitro and in vivo antiinflammatory activity of clerodendrum paniculatum Linn. Leaves. Indian J. Pharm. Sci. 75, 376–379. https://doi.org/10.4103/0250-474X.117428 (2013).
-
Silva, I. M. P., Byzynski, G., Ribeiro, C. & Longo, E. Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO: N). J. Mol. Catal. Chem. 417, 89–100. https://doi.org/10.1016/j.molcata.2016.02.027 (2016).
-
Ganesh, K. S. & Subathra, D. C. Formulation of cost-effective medium and optimization studies for enhanced production of Rapamycin. Microb. cell. fact. 22, 189. https://doi.org/10.1186/s12934-023-02201-3 (2023).
-
Ganesh, S. K., Chakravorty, A., Raghavan, V. & Devi, C. S. Chitosan coated ZnO/Tio2/Gd2O3 nano composites for improved rapamycin delivery in non-small cell lung cancer. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2025.145439 (2025).
-
Athulya, P. A., Chandrasekaran, N. & Thomas, J. Bacillus spp. Isolated from intestine of Oreochromis mossambicus: identifying a potential probiotic for tilapia culture. Aquac Rep. 36, 102067. https://doi.org/10.1016/j.aqrep.2024.102067 (2024).
-
Atwood, H. L., Fontenot, Q. C., Tomasso, J. R. & Isely, J. J. Toxicity of nitrite to Nile tilapia: Effect of fish size and environmental chloride. N. Am. J. Aquac. 63, 49–51 (2001).
-
Aparna, V. et al. Anti-inflammatory property of n‐hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. https://doi.org/10.1111/j.1747-0285.2012.01418.x (2021).
-
Yurawecz, M. P. et al. Furan fatty acids determined as oxidation products of conjugated octadecadienoic acid. Lipids 30:595-8. 10.1007/BF02536995, (2022) One-pot green synthesis of ZnO nanoparticles using Scoparia Dulcis plant extract for antimicrobial and antioxidant activities. Appl Nanosci 13:1–11. 10.1007/s13204-022-02610-7. (1995).
-
Vasantharaj, S. et al. Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J. Environ. Chem. Eng. 9, 105772. https://doi.org/10.1016/j.envpol.2019.113032 (2021).
-
Zhang, Y., Xu, L. & Wang, J. Bagasse-based porous flower-like MoS2/carbon composites for efficient microwave absorption. Carbon Lett. 35, 145–160. https://doi.org/10.1007/s42823-024-00832-z (2024).
-
Namvar, F. et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomed. 9, 2479–88. https://doi.org/10.2147/IJN.S59661 (2014).
-
Soni, P., Sharma, S., Sharma, S., Kumar, S. & Sharma, K. P. A comparative study on the toxic effects of textile dye wastewaters (untreated and treated) on mortality and RBC of a freshwater fish Gambusia affinis (Baird and Gerard). J. Environ. Biol. 27, 623–628 (2006).
-
Mehra, S., Singh, M. & Chadha, P. J. T. I. Adverse impact of textile dyes on the aquatic environment as well as on human beings. Toxicol. Int. 28, 165. https://doi.org/10.1016/j.biori.2019.09.001 (2021).
-
Suryavathi, V. et al. Acute toxicity of textile dye wastewaters (untreated and treated) of sanganer on male reproductive systems of albino rats and mice. Reprod. Toxicol. 19, 547–556. https://doi.org/10.1016/j.reprotox.2004.09.011 (2005).
