An efficient and reproducible cryopreservation protocol for sustainable conservation of Jojoba (Simmondsia chinensis)

an-efficient-and-reproducible-cryopreservation-protocol-for-sustainable-conservation-of-jojoba-(simmondsia-chinensis)
An efficient and reproducible cryopreservation protocol for sustainable conservation of Jojoba (Simmondsia chinensis)

References

  1. Dyer, J. M., Stymne, S., Green, A. G. & Carlsson, A. S. High value oils from plants. Plant. J. 54, 640–655 (2008).

    Google Scholar 

  2. Agarwal, S., Kumari, S., Mudgal, A. & Khan, S. Green synthesized nano additives in Jojoba biodiesel diesel blends: an improvement of engine performance and emission. Renew. Energy. 147, 1836–1844 (2020).

    Google Scholar 

  3. Agarwal, S., Arya, D. & Khan, S. Comparative fatty acid and trace elemental analysis identified the best Raw material of Jojoba (Simmondsia chinensis) for commercial applications. Ann. Agric. Sci. 63, 37–45 (2018).

    Google Scholar 

  4. Hill, K. & Hofer, R. Natural fats and oils. In Sustainable Solutions for Modern Economies (ed Hofer, R.) 167–237 (Royal Society of Chemistry, 2009).

  5. Aburjai, T. & Natsheh, F. M. Plants used in cosmetics. Phytother Res. 17, 987–1000 (2003).

    Google Scholar 

  6. Meyer, J., Marshall, B., Gacula, M. Jr. & Rheins, L. Evaluation of additive effects of hydrolyzed Jojoba (Simmondsia chinensis) esters and glycerol: A preliminary study. J. Cosmet. Dermatol. 7, 268–274 (2008).

    Google Scholar 

  7. Ranzato, E., Martinotti, S. & Burlando, B. Wound healing properties of Jojoba liquid wax: an in vitro study. J. Ethnopharmacol. 134, 443–449 (2011).

    Google Scholar 

  8. Miwa, T., Rothfus, J. A. & Dimitroff, E. Extreme pressure lubricant tests on Jojoba and sperm Whale oils. J. Am. Oil Chem. Soc. 56, 765–770 (1979).

    Google Scholar 

  9. Bisht, R. P. S., Sivasankaran, G. A. & Bhatia, V. K. Additive properties of Jojoba oil for lubricating oil formulations. Wear 161, 193–197 (1993).

    Google Scholar 

  10. El Kinawy, O. Comparison between Jojoba oil and other vegetable oils as a substitute to petroleum. Energy Sources. 26, 639–645 (2004).

    Google Scholar 

  11. Wisniak, J. The chemistry and technology of Jojoba oil. Am. Oil Chem. Soc. (1987).

  12. Al Obaidi, J. R. et al. A review on plant importance, biotechnological aspects, and cultivation challenges of Jojoba plant. Biol. Res. 50, 50 (2017).

    Google Scholar 

  13. Tyagi, R. K. & Prakash, S. Clonal propagation and in vitro conservation of Jojoba (Simmondsia chinensis). Indian J. Plant. Genet. Resour. 4, 298–300 (2001).

    Google Scholar 

  14. Tyagi, R. K. & Prakash, S. Genotype and sex specific protocols for in vitro micropropagation and medium term conservation of Jojoba. Biol. Plant. 48, 19–23 (2004).

    Google Scholar 

  15. Bekheet, S. A. et al. In vitro conservation of Jojoba (Simmondsia chinensis) shootlet cultures using osmotic stress and low temperature. Middle East. J. Agric. Res. 5, 396–402 (2016).

    Google Scholar 

  16. Wang, B. et al. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol. Adv. 32, 583–395 (2014).

    Google Scholar 

  17. Panis, B. Sixty years of plant cryopreservation: from freezing hardy mulberry twigs to Establishing reference crop collections for future generations. Acta Hortic. 1234, 1–8 (2019).

    Google Scholar 

  18. Normah, M. N., Sulong, N. & Reed, B. M. Cryopreservation of shoot tips of recalcitrant and tropical species: advances and strategies. Cryobiology 8, 1–14 (2019).

    Google Scholar 

  19. Benelli, C. Plant cryopreservation: A look at the present and the future. Plants 10, 2744 (2021).

    Google Scholar 

  20. Acker, J. P., Adkins, S., Alves, A., Horna, D. & Toll, J. Feasibility Study for a Safety Backup Cryopreservation Facility (Bioversity International, 2017).

  21. Panis, B. & Nagel, M. Van Den Houwe, I. Challenges and prospects for the conservation of crop genetic resources in field genebanks, in in vitro collections and/or in liquid nitrogen. Plants (Basel). 9, 1634 (2020).

    Google Scholar 

  22. Feng, C. H. et al. Duration of sucrose preculture is critical for shoot regrowth of in vitro grown Apple shoot tips cryopreserved by encapsulation dehydration. Plant. Cell. Tissue Organ. Cult. 112, 369–378 (2013).

    Google Scholar 

  23. Crowe, J. H. et al. Interactions of sugars with membranes. Biochim. Biophys. Acta. 947, 367–384 (1989).

    Google Scholar 

  24. Suzuki, M. et al. Physiological changes in Gentian axillary buds during two-step preculturing with sucrose that conferred high levels of tolerance to desiccation and cryopreservation. Ann. Bot. 97, 1073–1081 (2006).

    Google Scholar 

  25. Shibli, R. A., Haagenson, D. M., Cunningham, S. M., Berg, W. K. & Volenec, J. J. Cryopreservation of alfalfa (Medicago sativa L.) cells by encapsulation dehydration. Plant. Cell. Rep. 20, 445–450 (2001).

    Google Scholar 

  26. Hoekstra, F. A., Golovina, E. A., Tetteroo, F. A. A. & Wolkers, W. F. Induction of desiccation tolerance in plant somatic embryos: How exclusive is the protective role of sugars? Cryobiology 43, 140–150 (2001).

  27. Kim, H. H. et al. Development of alternative plant vitrification solutions in droplet vitrification procedures. CryoLetters 30, 320–334 (2009).

    Google Scholar 

  28. Pinker, I., Halmagyi, A. & Olbricht, K. Effects of sucrose preculture on cryopreservation by droplet vitrification of strawberry cultivars and morphological stability of cryopreserved plants. CryoLetters 30, 202–211 (2009).

    Google Scholar 

  29. Chen, X. L. et al. X. Cryopreservation of in vitro grown apical meristems of Lilium by droplet vitrification. S Afr. J. Bot. 77, 397–403 (2011).

    Google Scholar 

  30. Sekizawa, K., Yamamoto, S. I., Rafique, T., Fukui, K. & Niino, T. Cryopreservation of in vitro grown shoot tips of carnation (Dianthus caryophyllus L.) by vitrification method using aluminium cryo plates. Plant. Biotechnol. 28, 401–405 (2011).

    Google Scholar 

  31. Zhang, J. M. et al. Identification of a highly successful cryopreservation method (droplet vitrification) for Petunia. Vitro Cell. Dev. Biol. -Plant. 51, 445–451 (2015).

    Google Scholar 

  32. Liu, X. X., Mou, S. W., Wen, Y. B. & Cheng, Z. H. Establishment of a Garlic cryopreservation protocol for shoot apices from adventitious buds in vitro. Sci. Hortic. 226, 10–18 (2017).

    Google Scholar 

  33. Zhang, A. L. et al. Overcoming challenges for shoot tip cryopreservation of root and tuber crops. Agronomy 13 (2023).

  34. Fuller, B. J. & Cryoprotectants The essential antifreezes to protect life in the frozen state. CryoLetters 25, 375–388 (2004).

    Google Scholar 

  35. Volk, G. M. & Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 52, 48–61 (2006).

    Google Scholar 

  36. Sakai, A., Hirai, D. & Niino, T. Development of PVS-based vitrification and encapsulation–vitrification protocols. In Plant Cryopreservation: A Practical Guide (ed Reed, B. M.) 33–57 (Springer, 2008).

  37. Wang, R. R. et al. Shoot recovery and genetic integrity of Chrysanthemum morifolium shoot tips following cryopreservation by droplet-vitrification. Sci. Hortic. 176, 330–339 (2014).

    Google Scholar 

  38. Medina, A. M., Casas, L., Swennen, R. & Panis, B. Cryopreservation of Thymus moroderi by droplet vitrification. CryoLetters 31, 14–23 (2010).

    Google Scholar 

  39. Volk, G. M., Bonnart, R., Krueger, R. & Lee, R. R. Cryopreservation of citrus shoot tips using micrografting for recovery. CryoLetters 33, 418–426 (2012).

    Google Scholar 

  40. Benelli, C., Carvalho, L. S. O., Merzougui, S. E. L. & Petruccelli, R. Two advanced cryogenic procedures for improving Stevia rebaudiana (Bertoni) cryopreservation. Plants 10, 1 (2021).

    Google Scholar 

  41. Gowthami, R., Chander, S., Pandey, R., Shankar, M. & Agrawal, A. Development of efficient and sustainable droplet vitrification cryoconservation protocol for shoot tips for long term conservation of Dahlia germplasm. Sci. Hortic. 321, 112329 (2023).

    Google Scholar 

  42. Malhotra, E. V., Mali, S. C., Sharma, S. & Bansal, S. A droplet vitrification cryopreservation protocol for conservation of hops (Humulus lupulus) genetic resources. Cryobiology 115, 104887. https://doi.org/10.1016/j.cryobiol.2024.104887 (2024).

    Google Scholar 

  43. Panta, A. et al. Improved cryopreservation method for the long term conservation of the world potato germplasm collection. Plant. Cell. Tiss Organ. Cult. 120, 117–125. https://doi.org/10.1007/s11240-014-0585-2 (2015).

    Google Scholar 

  44. Nakkanong, K. & Nualsri, C. Cryopreservation of Hevea Brasiliensis zygotic embryos by vitrification and encapsulation dehydration. J. Plant. Biotechnol. 45, 333–339 (2018).

    Google Scholar 

  45. Bettoni, J. C., Bonnart, R., Shepherd, A., Kretzschmar, A. A. & Volk, G. M. Cryopreservation of grapevine (Vitis spp.) shoot tips from growth chamber-sourced plants and histological observations. Vitis 58, 71–78 (2019).

    Google Scholar 

  46. Nishizawa, S., Sakai, A., Amano, Y. & Matsuzawa, T. Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant. Sci. 91, 67–73. https://doi.org/10.1016/0168-9452(93)90189-7 (1993).

    Google Scholar 

  47. Wang, M. R. et al. Droplet vitrification for shoot tip cryopreservation of Shallot (Allium Cepa var. aggregatum): effects of PVS3 and PVS2 on shoot regrowth. Plant. Cell. Tiss Organ. Cult. 140, 185–195 (2020).

    Google Scholar 

  48. Vujović, T., Anđelić, T., Marković, Z., Gajdošová, A. & Hunková, J. Cryopreservation of highbush blueberry, strawberry, and Saskatoon using V and D cryo-plate methods and monitoring of multiplication ability of regenerated shoots. Vitro Cell. Dev. Biol. -Plant. 60, 85–97 (2024).

    Google Scholar 

  49. Bettoni, J. C., Bonnart, R. & Volk, G. M. Challenges in implementing plant shoot tip cryopreservation technologies. Plant. Cell. Tiss Organ. Cult. 144, 21–34. https://doi.org/10.1007/s11240-020-01846-x (2021).

    Google Scholar 

  50. Zámečník, J., Faltus, M. & Bilavčík, A. Vitrification solutions for plant cryopreservation: modification and properties. Plants 10, 2623 (2021).

    Google Scholar 

  51. Harding, K. et al. Concepts in cryobionomics: a case study of Ribes genotype responses to cryopreservation in relation to thermal analysis oxidative stress nucleic acid methylation and transcriptional activity. In Cryopreservation of Crop Species in Europe, Proceedings of CRYOPLANET COST Action 871, 20–23 February 2008, Oulu, MTT Agrifood Research Working Papers 153 (eds Laamanen, J. et al.).

  52. A droplet vitrification cryopreservation protocol for conservation of hops (Humulus lupulus) genetic resources. Cryobiology 115, 104887 (2024).

  53. Yin, Z. F., Zhao, B., Bi, W. L., Chen, L. & Wang, Q. C. Direct shoot regeneration from basal leaf segments of lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. Vitro Cell. Develop Biol. – Plant. 49, 333–342 (2013).

    Google Scholar 

  54. Zhang, J. M. et al. Identification of a highly successful cryopreservation method (droplet-vitrification) for Petunia. Vitro Cell. Develop Biol. – Plant. 51, 445–451 (2015).

    Google Scholar 

  55. Reed, B. M. Plant Cryopreservation: A Practical Guide (Springer, 2005).

  56. Wilms, H. et al. Development of a fast and user-friendly cryopreservation protocol for sweet potato genetic resources. Sci. Rep. 10, 14674 (2020).

    Google Scholar 

  57. Rantala, S. et al. Droplet vitrification technique for cryopreservation of a large diversity of blackcurrant (Ribes nigrum L.) cultivars. Plant. Cell. Tiss Organ. Cult. 144, 79–90 (2021).

    Google Scholar 

  58. Sharma, N. et al. Cryopreservation and genetic stability assessment of regenerants of the critically endangered medicinal plant Dioscorea deltoidea Wall. Ex Griseb. For cryobanking of germplasm. Vitro Cell. Dev. Biol. -Plant. 58, 521–529 (2022).

    Google Scholar 

  59. Volk, G. M., Henk, A. D., Jenderek, M. M. & Richards, C. M. Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Genet. Resour. Crop Evol. 64, 1613–1622 (2017).

    Google Scholar 

  60. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Google Scholar 

  61. Sakai, A., Kobayashi, S. & Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. Brasiliensis Tanaka) by vitrification. Plant. Cell. Rep. 9, 30–33 (1990).

    Google Scholar 

  62. Doyle, J. & Doyle, J. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 19, 11–15 (1987).

    Google Scholar 

Download references