References
-
Darwesh, O. M., Eweys, A. S., Zhao, Y.-S. & Matter, I. A. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresour. Bioprocess. 10, 12 (2023).
-
Darwesh, O. M., Li, H. & Matter, I. A. Nano-bioremediation of textile industry wastewater using immobilized CuO-NPs myco-synthesized by a novel Cu-resistant Fusarium oxysporum OSF18. Environ. Sci. Pollut. Res. 30, 16694–16706 (2023).
-
Darwesh, O. M., Mahmoud, R. H., Abdo, S. M. & Marrez, D. A. Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds. Biotechnol. Rep. 35, e00753 (2022).
-
Radwan, A. A., Darwesh, O. M., Emam, M. T., Mohamed, K. A. & Shady, H. M. A. A combined treatment of Proteinase K and biosynthesized ZnO-NPs for eradication of dairy biofilm of sporeformers. AIMS Microbiol 8, 507 (2022).
-
Abdelhameed, R. M., Darwesh, O. M., El-Shahat, M. Synthesis of arylidene hydrazinylpyrido [2, 3-d] pyrimidin-4-ones as potent anti-microbial agents. Heliyon 6 (2020).
-
Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T., Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In: Methods Enzymol 481–502 (Elsevier, 2020).
-
Hamad, M. N. F., Marrez, D. A. & El-Sherbieny, S. M. R. Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa. Biointerface Res. Appl. Chem. 10, 6974–6990 (2020).
-
Mei, L. et al. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431
-
Li, W., Thian, E. S., Wang, M., Wang, Z. & Ren, L. Surface design for antibacterial materials: From fundamentals to advanced strategies. Adv. Sci. 8, 2100368 (2021).
-
Singh, S. Ahuja, A. Novel and Innovative Approach of Nanotechnology with their Applications in the Management of Infectious Disease, Tuberculosis: An Overview. Recent Pat Nanotechnol 18, (2024) 140-163 . https://doi.org/10.2174/1872210516666220523122724
-
O’Neill, Jim. Tackling drug-resistant infections globally: final report and recommendations. Arch Pharm Pract (2016).
-
Faty, M., Saleh, S. M., El-Nahas, A. R., Al-Shaiji, T. F. & Al-Terki, A. Antibiotic prophylaxis for transrectal ultrasound-guided prostatic biopsies: A comparison of two regimens. Afr. J. Urol. 26, 1–5 (2020).
-
Pilatz, A. et al. Antibiotic prophylaxis for the prevention of infectious complications following prostate biopsy: a systematic review and meta-analysis. J Urol 204, 224–230 https://doi.org/10.1097/JU.0000000000000814 (2020).
-
Butler, J., Handy, R. D., Upton, M. Besinis, A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano 17, 7064–7092 https://doi.org/10.1021/acsnano.2c12488(2023) .
-
Mo, F., Zhou, Q. & He, Y. Nano–Ag: Environmental applications and perspectives. Science of The Total Environment 829, 154644 https://doi.org/10.1016/j.scitotenv.2022.154644 (2022).
-
Liang, Y., He, J. & Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021).
-
Nguyen, D. D., Luo, L.-J. & Lai, J.-Y. Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Mater. Sci. Eng. C 119, 111497 (2021).
-
Hayati, P. et al. Photocatalytic activity of new nanostructures of an Ag(i) metal–organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New J. Chem. 45, 3408–3417. https://doi.org/10.1039/D0NJ02460K (2021).
-
Hasanzadeh, A. et al. Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay. J. Colloid Interface Sci. 585, 676–683. https://doi.org/10.1016/j.jcis.2020.10.047 (2021).
-
Xia, H. et al. Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance. Appl. Surf. Sci. 257, 9397–9402. https://doi.org/10.1016/j.apsusc.2011.06.016 (2011).
-
Singh, R. & Bhateria, R. Core–shell nanostructures: A simplest two-component system with enhanced properties and multiple applications. Environ. Geochem. Health 43, 2459–2482 (2021).
-
Xu, C., Akakuru, O. U., Zheng, J. & Wu, A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front. Bioeng. Biotechnol. 7, 141. https://doi.org/10.3389/fbioe.2019.00141 (2019).
-
Taghavi, R. et al. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg Chem 61, 15747–15783. https://doi.org/10.1021/acs.inorgchem.2c01939 (2022).
-
Sadeghi, E., Taghavi, R., Hasanzadeh, A. & Rostamnia, S. Bactericidal behavior of silver nanoparticle decorated nano-sized magnetic hydroxyapatite. Nanoscale Adv. https://doi.org/10.1039/D4NA00183D (2024).
-
Alavi, M. Nokhodchi, A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today 26, 1953–1962 https://doi.org/10.1016/j.drudis.2021.03.030 (2021).
-
Vargas, M. A. Rodríguez-Páez, J. E. Amorphous TiO2 nanoparticles: Synthesis and antibacterial capacity. Journal of Non-Crystalline Solids. 459, 192–205 https://doi.org/10.1016/j.jnoncrysol.2017.01.018 (2017).
-
Zhang, G., Liu, J., Zhu, Y., Shen, T. Yang, D. quan. Enhanced antibacterial efficacies, corrosion resistance, and cytocompatibility of ZnO/CuO composite coatings through designed sputtering orders. Appl Surf Sci 635, 157724 https://doi.org/10.1016/j.apsusc.2023.157724 (2023).
-
Jan, T. et al. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microb Pathog 134, 103579 https://doi.org/10.1016/j.micpath.2019.103579 (2019).
-
Qi, K., Cheng, B., Yu, J. & Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds 727, 792-820 (2017). https://doi.org/10.1016/j.jallcom.2017.08.142 .
-
Thakur, N. et al. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Science of the Total Environment 914,169815 (2024). https://doi.org/10.1016/j.scitotenv.2023.169815.
-
M, H. D., C, D. D. & R, P. L. Highly Reproducible Bactericidal Activity Test Results by Using a Modified National Committee for Clinical Laboratory Standards Broth Macrodilution Technique. J Clin Microbiol 37, 1881–1884 https://doi.org/10.1128/jcm.37.6.1881-1884.1999 (1999).
-
Liu Y, Wu L, Han J, Dong P, Luo X, Zhang Y and Zhu L. Inhibition of biofilm formation and related gene expression of Listeria monocytogenes in response to four natural antimicrobial compounds and sodium hypochlorite. Front Microbiol 11, 617473 (2021).doi: 10.3389/fmicb.2020.617473
-
Dehghan, Z., Ranjbar, M., Govahi, M. & Khakdan, F. Green synthesis of Ag/Fe3O4 nanocomposite utilizing Eryngium planum L. leaf extract and its potential applications in medicine. J Drug Deliv Sci Technol 67, 102941 (2022).https://doi.org/10.1016/j.jddst.2021.102941
-
Carignan, A. et al. Increasing Risk of Infectious Complications After Transrectal Ultrasound–Guided Prostate Biopsies: Time to Reassess Antimicrobial Prophylaxis? Eur Urol 62, 453–459 https://doi.org/10.1016/j.eururo.2012.04.044 (2012).
-
Bekele, T. & Alamnie, G. Treatment of antibiotic-resistant bacteria by nanoparticles: current approaches and prospects. Ann Adv Chem 6, 1–9 https://doi.org/10.29328/journal.aac.1001025 (2022).
-
Xu, Z., Zhang, C., Wang, X. & Liu, D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Appl Bio Mater 4, 3985–3999https://doi.org/10.1021/acsabm.0c01485 (2021).
-
Monica Potara, Endre Jakab, Annette Damert, Octavian Popescu, Valentin Canpean and Simion Astilean. Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology 22, 135101 https://doi.org/10.1088/0957-4484/22/13/135101 (2011).
-
Markowska, K., Grudniak, A. M. & Wolska, K. I. Silver Nanoparticles as an Alternative Strategy against Bacterial Biofilms. Acta Biochimica Polonica 60, 523–30 https://doi.org/10.18388/abp.2013_2016 (2013).
-
Gillespie, J. L. et al. Outbreak of Pseudomonas aeruginosa Infections After Transrectal Ultrasound-Guided Prostate Biopsy. Urology 69, 912–914 https://doi.org/10.1016/j.urology.2007.01.047 (2007).
-
Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20, 608–620 https://doi.org/10.1038/s41579-022-00767-0 (2022).
-
Stewart, P. S. & William Costerton, J. Antibiotic resistance of bacteria in biofilms. The Lancet 358, 135–138 https://doi.org/10.1016/S0140-6736(01)05321-1 (2001).
-
Joshi, A. S., Singh, P. & Mijakovic, I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int J Mol Sci 21, 7658https://doi.org/10.3390/ijms21207658 (2020).
-
Maillard, J.-Y. & Centeleghe, I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 12, 95 https://doi.org/10.1186/s13756-023-01290-4 (2023).
-
Chaudhari, P. R., Masurkar, S. A., Shidore, V. B. & Kamble, S. P. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation. Nanomicro Lett 4, 34–39 (2012).https://doi.org/10.1007/BF03353689
-
Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 79, 340–344 (2010).https://doi.org/10.1016/j.colsurfb.2010.04.014
-
Barabadi, H. Mojab, F. Vahidi, H. Marashi, B. Talank, N. Hosseini, O. Saravanan, M.. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg Chem Commun 129, 108647 (2021).https://doi.org/10.1016/j.inoche.2021.108647
-
Martinez-Gutierrez, F. Boegli, L. Agostinho, A. Sánchez, EA. Bach, H. Ruiz, F. James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29, 651–660 (2013).https://doi.org/10.1080/08927014.2013.794225
-
Awashra, M. & Młynarz, P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv 5, 2674–2723 (2023).https://doi.org/10.1039/D2NA00534D
-
Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G. & Rodrigues, M. F. A. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10, 115–121 (2017).doi: 10.2147/NSA.S133415
-
The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs.Edition: 1. Salomoni, R., Léo, P. & Rodrigues, M. F. A. Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells. Vol., 2, 851-857 (2015).
