Layer by layer preparation of Fe3O4@Cg-DTC/AgNPs as colloidal antimicrobial and anti-biofilm agent

layer-by-layer-preparation-of-fe3o4@cg-dtc/agnps-as-colloidal-antimicrobial-and-anti-biofilm-agent
Layer by layer preparation of Fe3O4@Cg-DTC/AgNPs as colloidal antimicrobial and anti-biofilm agent

References

  1. Darwesh, O. M., Eweys, A. S., Zhao, Y.-S. & Matter, I. A. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. Bioresour. Bioprocess. 10, 12 (2023).

    Google Scholar 

  2. Darwesh, O. M., Li, H. & Matter, I. A. Nano-bioremediation of textile industry wastewater using immobilized CuO-NPs myco-synthesized by a novel Cu-resistant Fusarium oxysporum OSF18. Environ. Sci. Pollut. Res. 30, 16694–16706 (2023).

    Google Scholar 

  3. Darwesh, O. M., Mahmoud, R. H., Abdo, S. M. & Marrez, D. A. Isolation of Haematococcus lacustris as source of novel anti-multi-antibiotic resistant microbes agents; fractionation and identification of bioactive compounds. Biotechnol. Rep. 35, e00753 (2022).

    Google Scholar 

  4. Radwan, A. A., Darwesh, O. M., Emam, M. T., Mohamed, K. A. & Shady, H. M. A. A combined treatment of Proteinase K and biosynthesized ZnO-NPs for eradication of dairy biofilm of sporeformers. AIMS Microbiol 8, 507 (2022).

    Google Scholar 

  5. Abdelhameed, R. M., Darwesh, O. M., El-Shahat, M. Synthesis of arylidene hydrazinylpyrido [2, 3-d] pyrimidin-4-ones as potent anti-microbial agents. Heliyon 6 (2020).

  6. Darwesh, O. M., Ali, S. S., Matter, I. A., Elsamahy, T., Mahmoud, Y. A. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. In: Methods Enzymol 481–502 (Elsevier, 2020).

  7. Hamad, M. N. F., Marrez, D. A. & El-Sherbieny, S. M. R. Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa. Biointerface Res. Appl. Chem. 10, 6974–6990 (2020).

    Google Scholar 

  8. Mei, L. et al. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 418, 129431 (2021). https://doi.org/10.1016/j.cej.2021.129431

    Google Scholar 

  9. Li, W., Thian, E. S., Wang, M., Wang, Z. & Ren, L. Surface design for antibacterial materials: From fundamentals to advanced strategies. Adv. Sci. 8, 2100368 (2021).

    Google Scholar 

  10. Singh, S.  Ahuja, A. Novel and Innovative Approach of Nanotechnology with their Applications in the Management of Infectious Disease, Tuberculosis: An Overview. Recent Pat Nanotechnol 18, (2024) 140-163 .  https://doi.org/10.2174/1872210516666220523122724

    Google Scholar 

  11. O’Neill, Jim. Tackling drug-resistant infections globally: final report and recommendations. Arch Pharm Pract (2016).

  12. Faty, M., Saleh, S. M., El-Nahas, A. R., Al-Shaiji, T. F. & Al-Terki, A. Antibiotic prophylaxis for transrectal ultrasound-guided prostatic biopsies: A comparison of two regimens. Afr. J. Urol. 26, 1–5 (2020).

    Google Scholar 

  13. Pilatz, A. et al. Antibiotic prophylaxis for the prevention of infectious complications following prostate biopsy: a systematic review and meta-analysis. J Urol 204, 224–230 https://doi.org/10.1097/JU.0000000000000814 (2020).

  14. Butler, J., Handy, R. D., Upton, M. Besinis, A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS Nano 17, 7064–7092 https://doi.org/10.1021/acsnano.2c12488(2023) .

  15. Mo, F., Zhou, Q. & He, Y. Nano–Ag: Environmental applications and perspectives. Science of The Total Environment 829, 154644 https://doi.org/10.1016/j.scitotenv.2022.154644 (2022).

  16. Liang, Y., He, J. & Guo, B. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15, 12687–12722 (2021).

    Google Scholar 

  17. Nguyen, D. D., Luo, L.-J. & Lai, J.-Y. Toward understanding the purely geometric effects of silver nanoparticles on potential application as ocular therapeutics via treatment of bacterial keratitis. Mater. Sci. Eng. C 119, 111497 (2021).

    Google Scholar 

  18. Hayati, P. et al. Photocatalytic activity of new nanostructures of an Ag(i) metal–organic framework (Ag-MOF) for the efficient degradation of MCPA and 2,4-D herbicides under sunlight irradiation. New J. Chem. 45, 3408–3417. https://doi.org/10.1039/D0NJ02460K (2021).

    Google Scholar 

  19. Hasanzadeh, A. et al. Biosynthesis of AgNPs onto the urea-based periodic mesoporous organosilica (AgxNPs/Ur-PMO) for antibacterial and cell viability assay. J. Colloid Interface Sci. 585, 676–683. https://doi.org/10.1016/j.jcis.2020.10.047 (2021).

    Google Scholar 

  20. Xia, H. et al. Synthesis and characterization of Fe3O4@C@Ag nanocomposites and their antibacterial performance. Appl. Surf. Sci. 257, 9397–9402. https://doi.org/10.1016/j.apsusc.2011.06.016 (2011).

    Google Scholar 

  21. Singh, R. & Bhateria, R. Core–shell nanostructures: A simplest two-component system with enhanced properties and multiple applications. Environ. Geochem. Health 43, 2459–2482 (2021).

    Google Scholar 

  22. Xu, C., Akakuru, O. U., Zheng, J. & Wu, A. Applications of iron oxide-based magnetic nanoparticles in the diagnosis and treatment of bacterial infections. Front. Bioeng. Biotechnol. 7, 141. https://doi.org/10.3389/fbioe.2019.00141 (2019).

    Google Scholar 

  23. Taghavi, R. et al. Magnetite metal-organic frameworks: Applications in environmental remediation of heavy metals, organic contaminants, and other pollutants. Inorg Chem 61, 15747–15783. https://doi.org/10.1021/acs.inorgchem.2c01939 (2022).

    Google Scholar 

  24. Sadeghi, E., Taghavi, R., Hasanzadeh, A. & Rostamnia, S. Bactericidal behavior of silver nanoparticle decorated nano-sized magnetic hydroxyapatite. Nanoscale Adv. https://doi.org/10.1039/D4NA00183D (2024).

    Google Scholar 

  25. Alavi, M. Nokhodchi, A. Synthesis and modification of bio-derived antibacterial Ag and ZnO nanoparticles by plants, fungi, and bacteria. Drug Discovery Today 26, 1953–1962 https://doi.org/10.1016/j.drudis.2021.03.030 (2021).

    Google Scholar 

  26. Vargas, M. A.  Rodríguez-Páez, J. E. Amorphous TiO2 nanoparticles: Synthesis and antibacterial capacity. Journal of Non-Crystalline Solids. 459, 192–205 https://doi.org/10.1016/j.jnoncrysol.2017.01.018 (2017).

    Google Scholar 

  27. Zhang, G., Liu, J., Zhu, Y., Shen, T.  Yang, D. quan. Enhanced antibacterial efficacies, corrosion resistance, and cytocompatibility of ZnO/CuO composite coatings through designed sputtering orders. Appl Surf Sci 635, 157724 https://doi.org/10.1016/j.apsusc.2023.157724 (2023).

    Google Scholar 

  28. Jan, T. et al. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Microb Pathog 134, 103579 https://doi.org/10.1016/j.micpath.2019.103579 (2019).

    Google Scholar 

  29. Qi, K., Cheng, B., Yu, J. & Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds 727, 792-820 (2017).  https://doi.org/10.1016/j.jallcom.2017.08.142 .

    Google Scholar 

  30. Thakur, N. et al. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Science of the Total Environment 914,169815 (2024). https://doi.org/10.1016/j.scitotenv.2023.169815.

    Google Scholar 

  31. M, H. D., C, D. D. & R, P. L. Highly Reproducible Bactericidal Activity Test Results by Using a Modified National Committee for Clinical Laboratory Standards Broth Macrodilution Technique. J Clin Microbiol 37, 1881–1884 https://doi.org/10.1128/jcm.37.6.1881-1884.1999 (1999).

    Google Scholar 

  32. Liu Y, Wu L, Han J, Dong P, Luo X, Zhang Y and Zhu L. Inhibition of biofilm formation and related gene expression of Listeria monocytogenes in response to four natural antimicrobial compounds and sodium hypochlorite. Front Microbiol 11, 617473 (2021).doi: 10.3389/fmicb.2020.617473

  33. Dehghan, Z., Ranjbar, M., Govahi, M. & Khakdan, F. Green synthesis of Ag/Fe3O4 nanocomposite utilizing Eryngium planum L. leaf extract and its potential applications in medicine. J Drug Deliv Sci Technol 67, 102941 (2022).https://doi.org/10.1016/j.jddst.2021.102941

    Google Scholar 

  34. Carignan, A. et al. Increasing Risk of Infectious Complications After Transrectal Ultrasound–Guided Prostate Biopsies: Time to Reassess Antimicrobial Prophylaxis? Eur Urol 62, 453–459 https://doi.org/10.1016/j.eururo.2012.04.044 (2012).

  35. Bekele, T. & Alamnie, G. Treatment of antibiotic-resistant bacteria by nanoparticles: current approaches and prospects. Ann Adv Chem 6, 1–9 https://doi.org/10.29328/journal.aac.1001025 (2022).

    Google Scholar 

  36. Xu, Z., Zhang, C., Wang, X. & Liu, D. Release Strategies of Silver Ions from Materials for Bacterial Killing. ACS Appl Bio Mater 4, 3985–3999https://doi.org/10.1021/acsabm.0c01485 (2021).

    Google Scholar 

  37. Monica Potara, Endre Jakab, Annette Damert, Octavian Popescu, Valentin Canpean and Simion Astilean. Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanotechnology 22, 135101 https://doi.org/10.1088/0957-4484/22/13/135101 (2011).

    Google Scholar 

  38. Markowska, K., Grudniak, A. M. & Wolska, K. I. Silver Nanoparticles as an Alternative Strategy against Bacterial Biofilms. Acta Biochimica Polonica 60, 523–30 https://doi.org/10.18388/abp.2013_2016 (2013).

  39. Gillespie, J. L. et al. Outbreak of Pseudomonas aeruginosa Infections After Transrectal Ultrasound-Guided Prostate Biopsy. Urology 69, 912–914 https://doi.org/10.1016/j.urology.2007.01.047 (2007).

    Google Scholar 

  40. Sauer, K. et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20, 608–620 https://doi.org/10.1038/s41579-022-00767-0 (2022).

  41. Stewart, P. S. & William Costerton, J. Antibiotic resistance of bacteria in biofilms. The Lancet 358, 135–138 https://doi.org/10.1016/S0140-6736(01)05321-1 (2001).

    Google Scholar 

  42. Joshi, A. S., Singh, P. & Mijakovic, I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int J Mol Sci 21, 7658https://doi.org/10.3390/ijms21207658 (2020).

  43. Maillard, J.-Y. & Centeleghe, I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 12, 95 https://doi.org/10.1186/s13756-023-01290-4 (2023).

    Google Scholar 

  44. Chaudhari, P. R., Masurkar, S. A., Shidore, V. B. & Kamble, S. P. Effect of Biosynthesized Silver Nanoparticles on Staphylococcus aureus Biofilm Quenching and Prevention of Biofilm Formation. Nanomicro Lett 4, 34–39 (2012).https://doi.org/10.1007/BF03353689

    Google Scholar 

  45. Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Deepak, V. & Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces 79, 340–344 (2010).https://doi.org/10.1016/j.colsurfb.2010.04.014

  46. Barabadi, H. Mojab, F. Vahidi, H. Marashi, B. Talank, N. Hosseini, O. Saravanan, M.. Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg Chem Commun 129, 108647 (2021).https://doi.org/10.1016/j.inoche.2021.108647

  47. Martinez-Gutierrez, F. Boegli, L. Agostinho, A. Sánchez, EA. Bach, H. Ruiz, F. James, G. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling 29, 651–660 (2013).https://doi.org/10.1080/08927014.2013.794225

  48. Awashra, M. & Młynarz, P. The toxicity of nanoparticles and their interaction with cells: an in vitro metabolomic perspective. Nanoscale Adv 5, 2674–2723 (2023).https://doi.org/10.1039/D2NA00534D

    Google Scholar 

  49. Salomoni, R., Léo, P., Montemor, A. F., Rinaldi, B. G. & Rodrigues, M. F. A. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10, 115–121 (2017).doi: 10.2147/NSA.S133415

  50. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs.Edition: 1. Salomoni, R., Léo, P. & Rodrigues, M. F. A. Antibacterial activity of silver nanoparticles (AgNPs) in Staphylococcus aureus and cytotoxicity effect in mammalian cells. Vol., 2, 851-857 (2015).

Download references