Statista. Projected size of the biopharmaceuticals market worldwide from 2020 to 2030*. 2022; Available from: https://www.statista.com/statistics/1293077/global-biopharmaceuticals-market-size/.
Walsh, G. & Walsh, E. Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40, 1722–1760 (2022).
FDA, Guidance for Industry PAT – A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance, F.A.D. Administration, Editor. 2004.
Osbourn, A. E. et al. Synthetic biology. N. Phytol. 196, 671–677 (2012).
Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16, 287–297 (2009).
Baldwin, G. et al. Synthetic Biology—A Primer (World Scientific Connect, 2012).
Hong, J. K. et al. Towards next generation CHO cell line development and engineering by systems approaches. Curr. Opin. Chem. Eng. 22, 1–10 (2018).
Liu, Y. et al. Towards next-generation model microorganism chassis for biomanufacturing. Appl. Microbiol. Biotechnol. 104, 1–14 (2020).
Doshi, A. et al. Small-molecule inducible transcriptional control in mammalian cells. Crit. Rev. Biotechnol. 40, 1131–1150 (2020).
Kallunki, T. et al. How to choose the right inducible gene expression system for mammalian studies? Cells 8, 796 (2019).
Goldberger, R. F. Autogenous regulation of gene expression. Science 183, 810–816 (1974).
Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323, 785–793 (2002).
Ferrell, J. E. Jr. et al. Simple, realistic models of complex biological processes: positive feedback and bistability in a cell fate switch and a cell cycle oscillator. FEBS Lett. 583, 3999–4005 (2009).
Osborn, D. P. et al. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Dev. Biol. 350, 464–475 (2011).
Lee, K. E. et al. Positive feedback loop between Sox2 and Sox6 inhibits neuronal differentiation in the developing central nervous system. Proc. Natl Acad. Sci. USA 111, 2794–2799 (2014).
Kueh, H. Y. et al. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341, 670–673 (2013).
Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549 (1974).
Dublanche, Y. et al. Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. 2, 41 (2006).
Nevozhay, D., Zal, T. & Balázsi, G. Transferring a synthetic gene circuit from yeast to mammalian cells. Nat. Commun. 4, 1451 (2013).
Nevozhay, D. et al. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. USA 106, 5123–5128 (2009).
Shimoga, V. et al. Synthetic mammalian transgene negative autoregulation. Mol. Syst. Biol. 9, 670 (2013).
Weber, W., Kramer, B. P. & Fussenegger, M. A genetic time-delay circuitry in mammalian cells. Biotechnol. Bioeng. 98, 894–902 (2007).
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).
Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).
Tsai, T. Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).
Del Vecchio, D., Dy, A. J. & Qian, Y. Control theory meets synthetic biology. J. R. Soc. Interface. 13, 20160380 (2016).
Lillacci, G., Benenson, Y. & Khammash, M. Synthetic control systems for high performance gene expression in mammalian cells. Nucleic Acids Res. 46, 9855–9863 (2018).
De Carluccio, G., Fusco, V. & di Bernardo, D. Engineering a synthetic gene circuit for high-performance inducible expression in mammalian systems. Nat. Commun. 15, 3311 (2024).
Perry, N. & Ninfa, A. J. Synthetic networks: oscillators and toggle switches for Escherichia coli. Methods Mol. Biol. 813, 287–300 (2012).
Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).
Auslander, S. & Fussenegger, M. Synthetic RNA-based switches for mammalian gene expression control. Curr. Opin. Biotechnol. 48, 54–60 (2017).
Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).
Lebar, T. et al. A bistable genetic switch based on designable DNA-binding domains. Nat. Commun. 5, 5007 (2014).
Kightlinger, W. et al. Synthetic glycobiology: parts, systems, and applications. ACS Synth. Biol. 9, 1534–1562 (2020).
Galvan, S., Teixeira, A. P. & Fussenegger, M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol. Bioeng. 121, 2987–3000 (2024).
Teixeira, A. P. & Fussenegger, M. Synthetic gene circuits for regulation of next-generation cell-based therapeutics. Adv. Sci. 11, e2309088 (2024).
Teixeira, A. P. & Fussenegger, M. Synthetic macromolecular switches for precision control of therapeutic cell functions. Nat. Rev. Bioeng. 2, 1005–1022 (2024).
Tigges, M. et al. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).
Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).
Ueda, H. R. et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37, 187–192 (2005).
Ukai-Tadenuma, M., Kasukawa, T. & Ueda, H. R. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 10, 1154–1163 (2008).
Swinburne, I. A. et al. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 22, 2342–2346 (2008).
Purcell, O. et al. A comparative analysis of synthetic genetic oscillators. J. R. Soc. Interface 7, 1503–1524 (2010).
Krzysztoń, R. et al. Gene-circuit therapy on the horizon: synthetic biology tools for engineered therapeutics. Acta Biochim. Pol. 68, 377–383 (2021).
MacDonald, I. C. & Deans, T. L. Tools and applications in synthetic biology. Adv. Drug Deliv. Rev. 105, 20–34 (2016).
Szenk, M., Yim, T. & Balazsi, G. Multiplexed gene expression tuning with orthogonal synthetic gene circuits. ACS Synth. Biol. 9, 930–939 (2020).
Weber, W. & Fussenegger, M. Inducible product gene expression technology tailored to bioprocess engineering. Curr. Opin. Biotechnol. 18, 399–410 (2007).
Jusiak, B. et al. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol. 34, 535–547 (2016).
Kramer, B. P., Fischer, C. & Fussenegger, M. BioLogic gates enable logical transcription control in mammalian cells. Biotechnol. Bioeng. 87, 478–484 (2004).
Singh, V. Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst. Synth. Biol. 8, 271–282 (2014).
Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).
Matsuura, S. et al. Synthetic RNA-based logic computation in mammalian cells. Nat. Commun. 9, 4847 (2018).
Nomura, Y. & Yokobayashi, Y. Aptazyme-based riboswitches and logic gates in mammalian cells. Methods Mol. Biol. 2323, 213–220 (2021).
Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).
Mills, E. M. et al. Development of mammalian cell logic gates controlled by unnatural amino acids. Cell Rep. Methods 1, 100073 (2021).
Toda, S., Frankel, N. W. & Lim, W. A. Engineering cell-cell communication networks: programming multicellular behaviors. Curr. Opin. Chem. Biol. 52, 31–38 (2019).
Basu, S. et al. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).
Chen, M. T. & Weiss, R. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana. Nat. Biotechnol. 23, 1551–1555 (2005).
Bacchus, W. et al. Synthetic two-way communication between mammalian cells. Nat. Biotechnol. 30, 991–996 (2012).
Braselmann, S., Graninger, P. & Busslinger, M. A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–1661 (1993).
No, D., Yao, T. P. & Evans, R. M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).
Oehme, I., Bösser, S. & Zörnig, M. Agonists of an ecdysone-inducible mammalian expression system inhibit Fas Ligand- and TRAIL-induced apoptosis in the human colon carcinoma cell line RKO. Cell Death Differ. 13, 189–201 (2006).
Constantino, S. et al. The ecdysone inducible gene expression system: unexpected effects of muristerone A and ponasterone A on cytokine signaling in mammalian cells. Eur. Cytokine Netw. 12, 365–367 (2001).
Aranda-Díaz, A. et al. Robust synthetic circuits for two-dimensional control of gene expression in yeast. ACS Synth. Biol. 6, 545–554 (2017).
McIsaac, R. S. et al. Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast. Nucleic Acids Res. 41, e57 (2013).
Ohira, M. J. et al. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast. Yeast 34, 323–334 (2017).
Beyer, H. M. et al. Optogenetic control of signaling in mammalian cells. Biotechnol. J. 10, 273–283 (2015).
Kolar, K. & Weber, W. Synthetic biological approaches to optogenetically control cell signaling. Curr. Opin. Biotechnol. 47, 112–119 (2017).
Mansouri, M., Strittmatter, T. & Fussenegger, M. Light-controlled mammalian cells and their therapeutic applications in synthetic biology. Adv. Sci. 6, 1800952 (2019).
Rost, B. R. et al. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).
Dwijayanti, A. et al. Toward multiplexed optogenetic circuits. Front. Bioeng. Biotechnol. 9, 804563 (2021).
Mansouri, M. & Fussenegger, M. Synthetic biology-based optogenetic approaches to control therapeutic designer cells. Curr. Opin. Syst. Biol. 28, 100396 (2021).
Zang, J. et al. Circadian regulation of vertebrate cone photoreceptor function. Elife 10, e68903 (2021).
Rivera-Cancel, G., Motta-Mena, L. B. & Gardner, K. H. Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222. Biochemistry 51, 10024–10034 (2012).
Jayaraman, P. et al. Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res. 44, 6994–7005 (2016).
Fernandez-Rodriguez, J. et al. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13, 706–708 (2017).
Baumschlager, A., Aoki, S. K. & Khammash, M. Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth. Biol. 6, 2157–2167 (2017).
Lalwani, M. A. et al. Optogenetic control of the lac operon for bacterial chemical and protein production. Nat. Chem. Biol. 17, 71–79 (2021).
Zhao, E. M. et al. Optogenetic amplification circuits for light-induced metabolic control. ACS Synth. Biol. 10, 1143–1154 (2021).
Zhao, E. M. et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555, 683–687 (2018).
Gebel, J. et al. Potent optogenetic regulation of gene expression in mammalian cells for bioproduction and basic research. Nucleic Acids Res. 53, gkaf546 (2025).
Chang, M. M. et al. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat. Chem. Biol. 15, 730–736 (2019).
Mullick, A. et al. The cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol. 6, 43 (2006).
Poulain, A. et al. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. J. Biotechnol. 255, 16–27 (2017).
Auslander, S. & Fussenegger, M. Engineering gene circuits for mammalian cell-based applications. Cold Spring Harb Perspect Biol. 8, a023895 (2016).
Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).
Krueger, C. et al. Tetracycline derivatives: alternative effectors for Tet transregulators. Biotechniques 37, 546, 548, 550 (2004).
Stanton, B. C. et al. Systematic transfer of prokaryotic sensors and circuits to mammalian cells. ACS Synth. Biol. 3, 880–891 (2014).
Farquhar, K. S. et al. Role of network-mediated stochasticity in mammalian drug resistance. Nat. Commun. 10, 2766 (2019).
Mak, A. N. et al. TAL effectors: function, structure, engineering and applications. Curr. Opin. Struct. Biol. 23, 93–99 (2013).
Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).
Mercer, A. C. et al. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3, 723–730 (2014).
Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).
Li, Y. et al. Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci. Rep. 2, 897 (2012).
Zhao, C. et al. Multiple chemical inducible tal effectors for genome editing and transcription activation. ACS Chem. Biol. 13, 609–617 (2018).
Black, J. B., Perez-Pinera, P. & Gersbach, C. A. Mammalian synthetic biology: engineering biological systems. Annu Rev. Biomed. Eng. 19, 249–277 (2017).
Malgieri, G. et al. The prokaryotic zinc-finger: structure, function and comparison with the eukaryotic counterpart. FEBS J. 282, 4480–4496 (2015).
Martínez-Gálvez, G. et al. Deploying MMEJ using MENdel in precision gene editing applications for gene therapy and functional genomics. Nucleic Acids Res 49, 67–78 (2021).
Dent, C. L. et al. Regulation of endogenous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors. Gene Ther. 14, 1362–1369 (2007).
Magnenat, L., Schwimmer, L. J. & Barbas, C. F. 3rd, Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther. 15, 1223–1232 (2008).
Wolfe, S. A., Nekludova, L. & Pabo, C. O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).
Gersbach, C. A., Gaj, T. & Barbas, C. F. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
Mahas, A., Stewart, C. N. eal Jr. & Mahfouz, M. M. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol. Adv. 36, 295–310 (2018). p.
Xu, X. & Qi, L. S. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431, 34–47 (2019).
Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).
Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
Lu, J. et al. Multimode drug inducible CRISPR/Cas9 devices for transcriptional activation and genome editing. Nucleic Acids Res. 46, e25 (2018).
Bao, Z. et al. Orthogonal genetic regulation in human cells using chemically induced CRISPR/Cas9 activators. ACS Synth. Biol. 6, 686–693 (2017).
Kleinjan, D. A. et al. Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat. Commun. 8, 1191 (2017).
Chen, W. C. W. et al. A synthetic transcription platform for programmable gene expression in mammalian cells. Nat. Commun. 13, 6167 (2022).
Ricci, C. G. et al. Deciphering off-target effects in CRISPR-Cas9 through accelerated molecular dynamics. ACS Cent. Sci. 5, 651–662 (2019).
Zhang, X. H. et al. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 4, e264 (2015).
Auslander, S. et al. A general design strategy for protein-responsive riboswitches in mammalian cells. Nat. Methods 11, 1154–1160 (2014).
Breaker, R. R. Riboswitches: from ancient gene-control systems to modern drug targets. Future Microbiol. 4, 771–773 (2009).
Hanson, S. et al. Tetracycline-aptamer-mediated translational regulation in yeast. Mol. Microbiol. 49, 1627–1637 (2003).
Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002).
Suess, B. et al. A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. 32, 1610–1614 (2004).
Dykstra, P. B., Kaplan, M. & Smolke, C. D. Engineering synthetic RNA devices for cell control. Nat. Rev. Genet 23, 215–228 (2022).
Ge, H. & Marchisio, M. A. Aptamers, riboswitches, and ribozymes in S. cerevisiae Synthetic Biology. Life 11, 248 (2021).
Wieland, M., Auslander, D. & Fussenegger, M. Engineering of ribozyme-based riboswitches for mammalian cells. Methods 56, 351–357 (2012).
Menon, A. et al. miRNA: a promising therapeutic target in cancer. Int. J. Mol. Sci. 2022. 23, 11502 (2022).
Klingler, F. et al. A novel system for glycosylation engineering by natural and artificial miRNAs. Metab. Eng. 77, 53–63 (2023).
Domin, G. et al. Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Res. 45, 4108–4119 (2017).
Ono, H., Kawasaki, S. & Saito, H. Orthogonal protein-responsive mrna switches for mammalian synthetic biology. ACS Synth. Biol. 9, 169–174 (2020).
Wang, L. Z. et al. Build to understand: synthetic approaches to biology. Integr. Biol. 8, 394–408 (2016).
Haseltine, E. L. & Arnold, F. H. Synthetic gene circuits: design with directed evolution. Annu Rev. Biophys. Biomol. Struct. 36, 1–19 (2007).
MacDonald, J. T. et al. Computational design approaches and tools for synthetic biology. Integr. Biol. 3, 97–108 (2011).
Koh, G. & Lee, D. Y. Mathematical modeling and sensitivity analysis of the integrated TNFalpha-mediated apoptotic pathway for identifying key regulators. Comput. Biol. Med. 41, 512–528 (2011).
Shao, H. et al. Systematically studying kinase inhibitor induced signaling network signatures by integrating both therapeutic and side effects. PLoS ONE 8, e80832 (2013).
Sun, X. et al. Systems modeling of anti-apoptotic pathways in prostate cancer: psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput. Biol. 9, e1003358 (2013).
Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).
Franceschini, G. & Macchietto, S. Model-based design of experiments for parameter precision: state of the art. Chem. Eng. Sci. 63, 4846–4872 (2008).
Huang, C., Cattani, F. & Galvanin, F. An optimal experimental design strategy for improving parameter estimation in stochastic models. Comput. Chem. Eng. 170, 108133 (2023).
Zheng, Y. & Sriram, G. Mathematical modeling: bridging the gap between concept and realization in synthetic biology. J. Biomed. Biotechnol. 2010, 541609 (2010).
Chen, S. et al. Building robust functionality in synthetic circuits using engineered feedback regulation. Curr. Opin. Biotechnol. 24, 790–796 (2013).
Bleris, L. et al. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol. 7, 519 (2011).
Jones, R. D. et al. An endoribonuclease-based feedforward controller for decoupling resource-limited genetic modules in mammalian cells. Nat. Commun. 11, 5690 (2020).
Frei, T. et al. Characterization and mitigation of gene expression burden in mammalian cells. Nat. Commun. 11, 4641 (2020).
Segall-Shapiro, T. H., Sontag, E. D. & Voigt, C. A. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36, 352–358 (2018).
Brown, A. J. & James, D. C. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol. Adv. 34, 492–503 (2016).
Cartwright, J. F. et al. A platform for context-specific genetic engineering of recombinant protein production by CHO cells. J. Biotechnol. 312, 11–22 (2020).
Pybus, L. P. et al. Model-directed engineering of “difficult-to-express” monoclonal antibody production by Chinese hamster ovary cells. Biotechnol. Bioeng. 111, 372–385 (2014).
Schlatter, S. et al. On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol. Prog. 21, 122–133 (2005).
Ho, S. C. L. et al. Control of IgG LC:HC ratio in stably transfected CHO cells and study of the impact on expression, aggregation, glycosylation and conformational stability. J. Biotechnol. 165, 157–166 (2013).
Carillo, S. et al. Intact multi-attribute method (iMAM): a flexible tool for the analysis of monoclonal antibodies. Eur. J. Pharm. Biopharm. 177, 241–248 (2022).
Millan-Martin, S. et al. Comprehensive multi-attribute method workflow for biotherapeutic characterization and current good manufacturing practices testing. Nat. Protoc. 18, 1056–1089 (2023).
Jimenez Del Val, I., Fan, Y. & Weilguny, D. Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modelling framework. Biotechnol. J. 11, 610–623 (2016).
Kotidis, P. et al. Model-based optimization of antibody galactosylation in CHO cell culture. Biotechnol. Bioeng. 116, 1612–1626 (2019).
Re, A. Synthetic gene expression circuits for designing precision tools in oncology. Front. Cell Dev. Biol. 5, 77 (2017).
Sakemura, R. et al. A tet-on inducible system for controlling CD19-chimeric antigen receptor expression upon drug administration. Cancer Immunol. Res. 4, 658–668 (2016).
Barrett, J. A. et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 25, 106–116 (2018).
Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).
Tang, Q. et al. Two-plasmid packaging system for recombinant adeno-associated virus. Biores Open Access 9, 219–228 (2020).
Clement, N. & Grieger, J. C. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol. Ther. Methods Clin. Dev. 3, 16002 (2016).
van der Loo, J. C. & Wright, J. F. Progress and challenges in viral vector manufacturing. Hum. Mol. Genet. 25, R42–R52 (2016).
Selvaraj, N. et al. Detailed protocol for the novel and scalable viral vector upstream process for AAV gene therapy manufacturing. Hum. Gene Ther. 32, 850–861 (2021).
Adamson-Small, L. et al. A scalable method for the production of high-titer and high-quality adeno-associated type 9 vectors using the HSV platform. Mol. Ther. Methods Clin. Dev. 3, 16031 (2016).
Nguyen, T. N. T. et al. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol. Ther. Methods Clin. Dev. 21, 642–655 (2021).
Qin, C. et al. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nat. Commun. 14, 1500 (2023).
Slusarczyk, A. L., Lin, A. & Weiss, R. Foundations for the design and implementation of synthetic genetic circuits. Nat. Rev. Genet. 13, 406–420 (2012).
Resch-Genger, U., Hoffmann, K. & Hoffmann, A. Standardization of fluorescence measurements: criteria for the choice of suitable standards and approaches to fit-for-purpose calibration tools. Ann. N. Y. Acad. Sci. 1130, 35–43 (2008).
Xie, M. & Fussenegger, M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat. Rev. Mol. Cell Biol. 19, 507–525 (2018).
Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).
Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires. Nature 469, 212–215 (2011).
Gaber, R. et al. Designable DNA-binding domains enable construction of logic circuits in mammalian cells. Nat. Chem. Biol. 10, 203–208 (2014).
abm Inc. Gene Regulation with dCas9. https://info.abmgood.com/crispr-cas9-gene-regulation-dCas9 (2017).
Zentner, G. E. & Henikoff, S. Epigenome editing made easy. Nat. Biotechnol. 33, 606–607 (2015).
Chavez, A. et al. Comparison of Cas9 activators in multiple species. Nat. Methods 13, 563–567 (2016).
Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).
Kearns, N. A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).
Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).
