Enhancing pharmacokinetic properties of Chikusetsusaponin IVa via modification of polyethylenimine/poly(lactic-co-glycolic acid) nanoparticles for sustained drug delivery

enhancing-pharmacokinetic-properties-of-chikusetsusaponin-iva-via-modification-of-polyethylenimine/poly(lactic-co-glycolic-acid)-nanoparticles-for-sustained-drug-delivery
Enhancing pharmacokinetic properties of Chikusetsusaponin IVa via modification of polyethylenimine/poly(lactic-co-glycolic acid) nanoparticles for sustained drug delivery
  • Kim, S. et al. Chemical structure and biological activities of secondary metabolites from salicornia Europaea L. Molecules 26 (8), 2252 (2021).

    Google Scholar 

  • Kwon, B. S. et al. Chronic alcohol exposure induced neuroapoptosis: diminishing effect of Ethyl acetate fraction from Aralia Elata. Oxidative Med. Cell. Longev. 2019 (1), 7849876 (2019).

    Google Scholar 

  • Yuan, C. et al. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through Inhibition of NLRP3 inflammasome activation and NF-κB signaling. Oncotarget 8 (19), 31023 (2017).

    Google Scholar 

  • Fang, X. et al. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am. J. Translational Res. 9 (9), 4288 (2017).

    Google Scholar 

  • Xin, Y. et al. MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264. 7 cell. Sci. Rep. 10 (1), 18303 (2020).

    Google Scholar 

  • Wang, X. et al. Panax japonicus and chikusetsusaponins: A review of diverse biological activities and Pharmacology mechanism. Chin. Herb. Med. 13 (1), 64–77 (2021).

    Google Scholar 

  • Gao, K. et al. Chikusetsusaponin IVa targeted YAP as an inhibitor to attenuate liver fibrosis and hepatic stellate cell activation. Chin. Med. 20 (1), 36 (2025).

    Google Scholar 

  • Guo, X. et al. Anti-inflammatory and osteoprotective effects of Chikusetsusaponin Ⅳa on rheumatoid arthritis via the JAK/STAT signaling pathway. Phytomedicine 93, 153801 (2021).

    Google Scholar 

  • Dai, Q. et al. Chikusetsusaponin IVa protects against H9N2 avian influenza virus infection by inhibiting inflammation and TLR4/NF-κB signaling pathways in vitro and in vivo. Pharmacognosy Magazine. 20 (2), 632–645 (2024).

    Google Scholar 

  • Zeng, Q. et al. Anti-inflammatory mechanism of Achyranthes longifolia extract and its component chikusetsusaponin IVa by modulating Nrf2/NF-κB pathways in vitro and in vivo. Fitoterapia. 106593 (2025).

  • Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16 (1), 71 (2018).

    Google Scholar 

  • Haggag, Y. A. et al. Nano-encapsulation of a novel anti-Ran-GTPase peptide for Blockade of regulator of chromosome condensation 1 (RCC1) function in MDA-MB-231 breast cancer cells. Int. J. Pharm. 521 (1–2), 40–53 (2017).

    Google Scholar 

  • Haggag, Y. et al. Co-delivery of a RanGTP inhibitory peptide and doxorubicin using dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer cells. Expert Opin. Drug Deliv. 17 (11), 1655–1669 (2020).

    Google Scholar 

  • Zewail, M. B. et al. Preparation and in vitro characterization of a novel self-nano emulsifying drug delivery system for a fixed-dose combination of Candesartan cilexetil and Hydrochlorothiazide. J. Drug Deliv. Sci. Technol. 61, 102320 (2021).

    Google Scholar 

  • Jan, N. et al. Biomimetic cell membrane-coated Poly (lactic‐co‐glycolic acid) nanoparticles for biomedical applications. Bioeng. Translational Med. 8 (2), e10441 (2023).

    Google Scholar 

  • Mahar, R. et al. Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. Aaps Pharmscitech. 24 (1), 39 (2023).

    Google Scholar 

  • Singh, S. & Singha, P. Effect of modifications in Poly (lactide-co-glycolide)(PLGA) on drug release and degradation characteristics: a mini review. Curr. Drug Deliv. 18 (10), 1378–1390 (2021).

    Google Scholar 

  • Care, I. O. L. A. & Animals, U. O. L. Guide for the Care and Use of Laboratory Animals (US Department of Health and Human Services, Public Health Service, National (1986).

  • Si, W. et al. Toward Understanding the effect of solvent evaporation on the morphology of PLGA microspheres by double emulsion method. Ind. Eng. Chem. Res. 60 (25), 9196–9205 (2021).

    Google Scholar 

  • Mittal, P. et al. Formulation, optimization, hemocompatibility and Pharmacokinetic evaluation of PLGA nanoparticles containing Paclitaxel. Drug Dev. Ind. Pharm. 45 (3), 365–378 (2019).

    Google Scholar 

  • Qi, D. et al. Determination of Chikusetsusaponin V and Chikusetsusaponin IV in rat plasma by liquid chromatography–mass spectrometry and its application to a preliminary Pharmacokinetic study. Biomed. Chromatogr. 27 (11), 1568–1573 (2013).

    Google Scholar 

  • Li, W. et al. Puerarin-loaded PEG-PE micelles with enhanced anti-apoptotic effect and better Pharmacokinetic profile. Drug Deliv. 25 (1), 827–837 (2018).

    Google Scholar 

  • Wang, Y. et al. Determination and validation of Chikusetsusaponin IVa in rat plasma by UPLC-MS/MS and its application to Pharmacokinetic study. Biomed. Chromatogr. 30 (9), 1423–1429 (2016).

    Google Scholar 

  • Li, H. et al. The effects of Chuanxiong on the pharmacokinetics of warfarin in rats after biliary drainage. J. Ethnopharmacol. 193, 117–124 (2016).

    Google Scholar 

  • Zhang, Y. et al. Pharmacokinetic profiling and tissue distribution of seven key saponins in rats following oral administration of Panacis Japonici rhizoma extracts. ACS Omega. 10 (38), 44585–44595 (2025).

    Google Scholar 

  • Constantinides, C. & Murphy, K. Molecular and integrative physiological effects of isoflurane anesthesia: the paradigm of cardiovascular studies in rodents using magnetic resonance imaging. Front. Cardiovasc. Med. 3, 23 (2016).

    Google Scholar 

  • Lepoittevin, M. et al. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell. Mol. Biol. Lett. 28 (1), 43 (2023).

    Google Scholar 

  • Cardot, J. & Davit, B. M. vitro–in vivo correlations: tricks and traps. AAPS J. 14 (3), 491–499 (2012).

    Google Scholar 

  • Haggag, Y. A. et al. Effect of Poly (ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm. Dev. Technol. 23 (4), 370–381 (2018).

    Google Scholar 

  • Haggag, Y. et al. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from Diblock copolymers of PLGA and PEG. Int. J. Pharm. 499 (1–2), 236–246 (2016).

    Google Scholar 

  • Alvi, M. et al. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 8 (1), 12 (2022).

    Google Scholar 

  • Jusu, S. M. et al. Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci. Rep. 10 (1), 14188 (2020).

    Google Scholar 

  • Gupta, V. & Ahsan, F. Influence of PEI as a core modifying agent on PLGA microspheres of PGE1, a pulmonary selective vasodilator. Int. J. Pharm. 413 (1–2), 51–62 (2011).

    Google Scholar 

  • Yu, K. et al. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm. 497 (1–2), 78–87 (2016).

    Google Scholar 

  • Kaplan, M. et al. Effects of particle geometry for PLGA-based nanoparticles: Preparation and in vitro/in vivo evaluation. Pharmaceutics 15 (1), 175 (2023).

    Google Scholar 

  • Xu, Y. et al. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: A review of experiments and theories. J. Biomedical Mater. Res. part. B: Appl. Biomaterials. 105 (6), 1692–1716 (2017).

    Google Scholar 

  • Zhao, C. & Zhou, B. Polyethyleneimine-based drug delivery systems for cancer theranostics. J. Funct. Biomaterials. 14 (1), 12 (2022).

    Google Scholar 

  • Balusamy, S. R. et al. A comprehensive and systemic review of ginseng-based nanomaterials: Synthesis, targeted delivery, and biomedical applications. Med. Res. Rev. 43 (5), 1374–1410 (2023).

    Google Scholar 

  • Shahbaz, S. K. et al. PLGA-based Curcumin delivery system: an interesting therapeutic approach in the treatment of alzheimer’s disease. Curr. Neuropharmacol. 20 (2), 309–323 (2022).

    Google Scholar 

  • Gupta, R., Chen, Y. & Xie, H. In vitro dissolution considerations associated with nano drug delivery systems. Wiley Interdisciplinary Reviews: Nanomed. Nanobiotechnol. 13 (6), e1732 (2021).

    Google Scholar 

  • Lindsay, S. et al. Exploring the challenges of lipid nanoparticle development: the in vitro–in vivo correlation gap. Vaccines 13 (4), 339 (2025).

    Google Scholar 

  • Lou, Y. et al. Effects of the CYP3A inhibitors, voriconazole, itraconazole, and fluconazole on the pharmacokinetics of osimertinib in rats[J]. PeerJ 11, e15844 (2023).

    Google Scholar