References
-
Zou, C., Zhang, Y., Liu, H., Wu, Y. & Zhou, X. Extracellular vesicles: recent insights into the interaction between host and pathogenic bacteria. Front. immunol. 13. https://doi.org/10.3389/fimmu.2022.840550 (2022).
-
Xie, J., Li, Q., Haesebrouck, F., Van Hoecke, L. & Vandenbroucke, R. E. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 40, 1173–1194. https://doi.org/10.1016/j.tibtech.2022.03.005 (2022).
-
Wen, M. et al. Bacterial extracellular vesicles: A position paper by the microbial vesicles task force of the Chinese society for extracellular vesicles. Interdiscip Med. 1, e20230017. https://doi.org/10.1002/INMD.20230017 (2023).
-
Liu, H. et al. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact Mater. 14, 169–181. https://doi.org/10.1016/j.bioactmat.2021.12.006 (2022).
-
Liu, C. et al. Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomater. 180, 18–45. https://doi.org/10.1016/j.actbio.2024.04.022 (2024).
-
Gao, J., Su, Y. & Wang, Z. Engineering bacterial membrane nanovesicles for improved therapies in infectious diseases and cancer. Adv. Drug Deliv Rev. 186, 114340. https://doi.org/10.1016/j.addr.2022.114340 (2022).
-
Gao, J., Dong, X. & Wang, Z. Generation, purification and engineering of extracellular vesicles and their biomedical applications. Methods 177, 114–125. https://doi.org/10.1016/j.ymeth.2019.11.012 (2020).
-
Huang, W. et al. Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. JCR 317, 1–22. https://doi.org/10.1016/j.jconrel.2019.11.017 (2020).
-
Kadurugamuwa, J. L. & Beveridge, T. J. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178, 2767–2774. https://doi.org/10.1128/jb.178.10.2767-2774.1996 (1996).
-
Han, G., Huang, T., Liu, X., Liu, R. & Bacteriophage EPP-1, a potential antibiotic alternative for controlling edwardsiellosis caused by Edwardsiella piscicida while mitigating drug-resistant gene dissemination. Sci. Rep. 14, 9399. https://doi.org/10.1038/s41598-024-60214-3 (2024).
-
Sáenz, J. S. et al. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome 7, 24. https://doi.org/10.1186/s40168-019-0632-7 (2019).
-
Zeng, Q., Liao, C., Terhune, J. & Wang, L. Impacts of florfenicol on the microbiota landscape and resistome as revealed by metagenomic analysis. Microbiome 7, 155. https://doi.org/10.1186/s40168-019-0773-8 (2019).
-
Fumakia, M. & Ho, E. A. Nanoparticles encapsulated with LL37 and Serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol. Pharm. 13, 2318–2331. https://doi.org/10.1021/acs.molpharmaceut.6b00099 (2016).
-
Ramos, R. et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides 32, 1469–1476. https://doi.org/10.1016/j.peptides.2011.06.005 (2011).
-
Neshani, A. et al. LL-37: review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 17, 100519. https://doi.org/10.1016/j.genrep.2019.100519 (2019).
-
Dias, M. K. H. M. et al. Exploring the proteomic landscape and Immunomodulatory functions of Edwardsiella piscicida derived extracellular vesicles. J. Microbiol. Biotechnol. 35 https://doi.org/10.4014/jmb.2410.10001 (2025).
-
López-García, J., Lehocký, M., Humpolíček, P. & Sáha, P. HaCaT keratinocytes response on antimicrobial Atelocollagen substrates: extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 5, 43–57. https://doi.org/10.3390/jfb5020043 (2014).
-
Jayathilaka, E. H. T. T. et al. Octominin: an antibacterial and anti-biofilm peptide for controlling the multidrug resistance and pathogenic Streptococcus parauberis. Fish. Shellfish Immunol. 110, 23–34. https://doi.org/10.1016/j.fsi.2020.12.017 (2021).
-
Moghaddam, Z. S. et al. Bacterial extracellular vesicles: bridging pathogen biology and therapeutic innovation. Acta Biomater. https://doi.org/10.1016/j.actbio.2025.05.028 (2025).
-
Xie, J., Haesebrouck, F., Van Hoecke, L. & Vandenbroucke, R. E. Bacterial extracellular vesicles: an emerging avenue to tackle diseases. Trends Microbiol. 31, 1206–1224. https://doi.org/10.1016/j.tim.2023.05.010 (2023).
-
Jiang, B. et al. Microbial extracellular vesicles contribute to antimicrobial resistance. PLoS Pathog. 20, e1012143. https://doi.org/10.1371/journal.ppat.1012143 (2024).
-
Huan, Y., Kong, Q., Mou, H. & Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.582779 (2020).
-
Ridyard, K. E. & Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiot. (Basel Switzerland). 10 https://doi.org/10.3390/antibiotics10060650 (2021).
-
Aidoukovitch, A., Bankell, E., Svensson, D. & Nilsson, B. O. Vitamin D triggers hCAP18/LL-37 production: implications for LL-37-induced human osteoblast cytotoxicity. BBRC 712–713. https://doi.org/10.1016/j.bbrc.2024.149962 (2024).
-
Rather, I. A., Sabir, J. S. M., Asseri, A. H. & Ali, S. Antifungal activity of human Cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candida auris. J. Fungi. 8, 204. https://doi.org/10.3390/jof8020204 (2022).
-
Yang, X. et al. Chitosan hydrogel encapsulated with LL-37 peptide promotes deep tissue injury healing in a mouse model. Mil Med. Res. 7, 20. https://doi.org/10.1186/s40779-020-00249-5 (2020).
-
Yang, B. et al. Significance of LL-37 on immunomodulation and disease outcome. Biomed Res. Int. 8349712, (2020). https://doi.org/10.1155/2020/8349712 (2020).
-
Hou, S. et al. Chlamydial plasmid-encoded virulence factor Pgp3 interacts with human Cathelicidin peptide LL-37 to modulate immune response. Microbes Infect. 21, 50–55. https://doi.org/10.1016/j.micinf.2018.06.003 (2019).
-
Steinstraesser, L. et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol. Ther. 22, 734–742. https://doi.org/10.1038/mt.2013.258 (2014).
-
Grönberg, A., Mahlapuu, M., Ståhle, M., Whately-Smith, C. & Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair. Regen. 22, 613–621. https://doi.org/10.1111/wrr.12211 (2014).
-
Ogawa, Y. et al. Stability of human salivary extracellular vesicles containing dipeptidyl peptidase IV under simulated Gastrointestinal tract conditions. Biochem. Biophys. Rep. 27, 101034. https://doi.org/10.1016/j.bbrep.2021.101034 (2021).
-
Zhang, M. et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101, 321–340. https://doi.org/10.1016/j.biomaterials.2016.06.018 (2016).
-
Midekessa, G. et al. Zeta potential of extracellular vesicles: toward Understanding the attributes that determine colloidal stability. ACS Omega. 5, 16701–16710. https://doi.org/10.1021/acsomega.0c01582 (2020).
-
Habibi, A., Davari, A. & Isazadeh, K. A novel LL-37@NH2@Fe3O4 inhibits the proliferation of the leukemia K562 cells: in-vitro study. Sci. Rep. 14, 22245. https://doi.org/10.1038/s41598-024-71946-7 (2024).
-
Chatterjee, S. in Oxidative Stress and Biomaterials (ed D. Allan Butterfield Thomas Dziubla) 35–58Academic Press, (2016).
-
Joo, H. S., Fu, C. I. & Otto, M. Bacterial strategies of resistance to antimicrobial peptides. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371 https://doi.org/10.1098/rstb.2015.0292 (2016).
-
Bae, J. et al. Pathophysiological differences of Edwardsiella piscicida at two different culture temperatures. Korean Soc. Life Sci. 35, 105–112. https://doi.org/10.5352/JLS.2025.35.2.105 (2025).
-
Zhang, R. et al. ArnB mediates CAMP resistance and in vivo colonization in the fish pathogen Edwardsiella piscicida. Aquac 576, 739855. https://doi.org/10.1016/j.aquaculture.2023.739855 (2023).
-
Ibrahim, U. H. et al. Engineered extracellular vesicles coated with an antimicrobial peptide for advanced control of bacterial sepsis. J. Ex. Bio. 3, e70000. https://doi.org/10.1002/jex2.70000 (2024).
-
Sivanantham, A. et al. Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors. Front. immunol. 14, 1044834. https://doi.org/10.3389/fimmu.2023.1044834 (2023).
-
Suri, K., D’Souza, A., Huang, D., Bhavsar, A. & Amiji, M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater. 22, 551–566. https://doi.org/10.1016/j.bioactmat.2022.10.024 (2023).
-
Tabarsa, M. et al. The activation of NF-κB and MAPKs signaling pathways of RAW264.7 murine macrophages and natural killer cells by fucoidan from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 148, 56–67. https://doi.org/10.1016/j.ijbiomac.2020.01.125 (2020).
-
Lubkowska, A., Pluta, W., Strońska, A. & Lalko, A. Role of heat shock proteins (HSP70 and HSP90) in viral infection. Int. J. Mol. Sci. 22, 9366. https://doi.org/10.3390/ijms22179366 (2021).
-
Mookherjee, N., Anderson, M. A., Haagsman, H. P. & Davidson, D. J. Antimicrobial host defence peptides: functions and clinical potential. Nat. Rev. Drug Discov. 19, 311–332. https://doi.org/10.1038/s41573-019-0058-8 (2020).
-
Xi, L. et al. Cathelicidin LL-37 promotes wound healing in diabetic mice by regulating TFEB-dependent autophagy. Peptides 175, 171183. https://doi.org/10.1016/j.peptides.2024.171183 (2024).
-
Miranda, E. et al. Efficacy of LL-37 cream in enhancing healing of diabetic foot ulcer: a randomized double-blind controlled trial. Arch. Dermatol. Res. 315, 2623–2633. https://doi.org/10.1007/s00403-023-02657-8 (2023).
-
Hajam, I. A., Dar, P. A., Shahnawaz, I., Jaume, J. C. & Lee, J. H. Bacterial flagellin—a potent Immunomodulatory agent. Exp. Mol. Med. 49, e373–e373. https://doi.org/10.1038/emm.2017.172 (2017).
-
Gao, N., Kumar, A., Jyot, J. & Yu, F. S. Flagellin-induced corneal antimicrobial peptide production and wound repair involve a novel NF-κB–independent and EGFR-dependent pathway. Plos One. 5, e9351. https://doi.org/10.1371/journal.pone.0009351 (2010).
-
Pei, W. et al. Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regen Med. 1, 16013. https://doi.org/10.1038/npjregenmed.2016.13 (2016).
-
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).
-
Edirisinghe, S. L. et al. Spirulina maxima derived marine pectin promotes the in vitro and in vivo regeneration and wound healing in zebrafish. Fish. Shellfish Immunol. 107, 414–425. https://doi.org/10.1016/j.fsi.2020.10.008 (2020).
