Effect of low 2,4-D concentration on enhancing indirect embryogenesis and genetic stability in date palm (Phoenix dactylifera L.)

effect-of-low-2,4-d-concentration-on-enhancing-indirect-embryogenesis-and-genetic-stability-in-date-palm-(phoenix-dactylifera-l.)
Effect of low 2,4-D concentration on enhancing indirect embryogenesis and genetic stability in date palm (Phoenix dactylifera L.)

References

  1. Al-Mssallem, M. Q. et al. Role of date palm to food and nutritional security in Saudi Arabia. In Food and nutrition security in the Kingdom of Saudi Arabia (eds Ahmed, A. E. et al.) 337–358 (Springer International Publishing Cham, Berlin, 2024).

    Google Scholar 

  2. Hussain, M. I., Farooq, M. & Syed, Q. A. Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.): A review. Food Biosci. 34, 100509. https://doi.org/10.1016/j.fbio.2019.100509 (2020).

    Google Scholar 

  3. Krueger, R. R. Date palm (Phoenix dactylifera L.) biology and utilization. In The date palm genome: Phylogeny Biodiversity and Mapping (eds Al-Khayri, J. M. et al.) 3–28 (Springer International Publishing, Berlin, 2021).

    Google Scholar 

  4. Habib, H. M. & Ibrahim, W. H. Nutritional quality of 18 date fruit varieties. Int. J. Food Sci. Nutr. 62, 544–551. https://doi.org/10.3109/09637486.2011.558073 (2011).

    Google Scholar 

  5. Rambabu, K. et al. Nutritional quality and physico-chemical characteristics of selected date fruit varieties of the United Arab Emirates. Processes 8, 256 (2020).

    Google Scholar 

  6. Perveen, K. & Bokahri, N. A. Comparative analysis of chemical, mineral and in-vitro antibacterial activity of different varieties of date fruits from Saudi Arabia. Saudi J. Biol. Sci. 27, 1886–1891. https://doi.org/10.1016/j.sjbs.2019.11.029 (2020).

    Google Scholar 

  7. Khanum, P., Khan, A. A., Khan, I. A., Ghaffar, A. & Khan, Z. Recent advances in date palm (Phoenix dactylifera L.) Biotechnology and breeding. In Breeding and biotechnology of leaf, fruit, and seed fiber crops advances in plant breeding strategies Vol. 11 (eds Salem, K. F. M. et al.) (Springer, Cham, 2025).

    Google Scholar 

  8. Mazri, M. A. & Meziani, R. Micropropagation of date palm: A review. Cell Dev. Biol. 4, 160 (2015).

    Google Scholar 

  9. Mullassery, B., Kurien, S., Umesh, C. & Kurup, S. Green house and field level problems of tissue cultured date palm (Phoenix dactylifera L.) plants: A review. Indian J Agric Res https://doi.org/10.18805/IJARe.A-6378 (2025).

    Google Scholar 

  10. Ali, A. S. A. & Hama, N. N. Integrated management for major date palm pests in Iraq. Emirates J. Food Agric. 28, 1. https://doi.org/10.9755/ejfa.2016-01-032 (2016).

    Google Scholar 

  11. Laaguidi, M., Meziani, R. & Sellam, K. In vitro culture of date palm: A review of challenges and solutions for managing endophytic bacteria contamination. Vegetos https://doi.org/10.1007/s42535-025-01287-x (2025).

    Google Scholar 

  12. Pandey, N., Tripathi, P., Pandey, N., Nakum, H., & Vala, Y. S. Advancements in Date palm genomics and biotechnology genomic resources to the precision agriculture: A comprehensive review. (2024). ‏

  13. Malabadi, R. B., Chalannavar, R. K. & Kolkar, K. P. Plant cell totipotency: Plant tissue culture applications—an updated review.. World J Adv Eng Technol Sci 16, 112–135. https://doi.org/10.30574/wjaets.2025.16.2.1262 (2025).

    Google Scholar 

  14. Nimavat, N. & Parikh, P. Innovations in date palm (Phoenix dactylifera L.) micropropagation: Detailed review of in vitro culture methods and plant growth regulator applications. Plant Cell Tissue Organ Cult. 159, 6. https://doi.org/10.1007/s11240-024-02866-7 (2024).

    Google Scholar 

  15. Zein Eldin, A. F. M. & Ibrahim, H. A. Some biochemical changes and activities of antioxidant enzymes in developing date palm somatic and zygotic embryos in vitro. Ann. Agric. Sci. 60, 121–130. https://doi.org/10.1016/j.aoas.2015.04.002 (2015).

    Google Scholar 

  16. Al-Asadi, A. Z., Al-Mayahi, A. M. & Awad, K. M. Effects of dicamba and casein hydrolysate on in vitro growth and growth and shoot regeneration of date palm (Phoenix dactylifera L.) cv. Barhee. Folia Oecol. 51, 56–65. https://doi.org/10.2478/foecol-2024-0006 (2024).

    Google Scholar 

  17. Eldawayati, M. M., Zayed, Z. E., Abdelaala, W. B. & Zayed, E. M. AgNPs: A superior alternative to AgNO3 for the optimal plantlets production by the indirect somatic embryogenesis protocol for date palm ‘Barhee’. RPCur. Tr. Agri. Env. Sci. 4, 25–31 (2025).

    Google Scholar 

  18. Al-Mayahi, A. M., Kalaf, Y. N., Abdul-Sahib, A. M., Abdul-Sahib, I. M. & Al-Sharifi, A. A. Anatomical study of adventitious bud regeneration from shoot tip of date palm (Phoenix dactylifera L.) cv Barhee in vitro. Basrah J. Date Palm Res. 23, 116–126 (2024).

    Google Scholar 

  19. AL-Mayahi, A. M. W. Effect of sodium nitroprusside with plant growth regulators on in vitro propagation and genetic stability of ‘Barhee’date palm (Phoenix dactylifera L.). J. Hortic. Res. 33, 1. https://doi.org/10.2478/johr-2025-0003 (2025).

    Google Scholar 

  20. Solangi, N. et al. Factors influencing somatic embryogenesis and plantlet regeneration of date palm using immature floral buds. Sarhad J Agric 39(2), 323–331. https://doi.org/10.17582/journal.sja/2023/39.2.323.331 (2023).

    Google Scholar 

  21. Mirani, A. A., Harikrishna, J. A., Teo, C. H. & Solangi, N. Factors influencing somaclonal variation in date palm, detection and selection for application in the plantation. In Somaclonal variation: basic and practical aspects (ed. Sánchez-Romero, C.) (Springer, Cham, 2024).

    Google Scholar 

  22. Qahtan, A. A., Faisal, M., Alatar, A. A. & Abdel-Salam, E. M. Callus-mediated high-frequency plant regeneration, phytochemical profiling, antioxidant activity and genetic stability in Ruta chalepensis L.. Plants 11, 1614 (2022).

    Google Scholar 

  23. Gueye, B. et al. Acquisition of callogenic capacity in date palm leaf tissues in response to 2, 4-D treatment. Plant Cell Tissue Organ Cult. 99, 35–45 (2009).

    Google Scholar 

  24. Garcia, C. et al. Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell Tissue Organ Cult. (PCTOC) 137, 193–212. https://doi.org/10.1007/s11240-019-01569-8 (2019).

    Google Scholar 

  25. Abass, M. H., Al-Utbi, S. D. & Al-Samir, E. A. Genotoxicity assessment of high concentrations of 2, 4-D, NAA and Dicamba on date palm callus (Phoenix dactylifera L.) using protein profile and RAPD markers. J. Genet. Eng. Biotechnol. 15, 287–295 (2017).

    Google Scholar 

  26. Abohatem, M., Al-Qubati, Y. & Abohatem, H. Effect of dark incubation in germination of indirect date palm somatic embryos and conversion into plantlets. J. Plant Biotechnol. 50, 267–274. https://doi.org/10.5010/JPB.2023.50.033.267 (2023).

    Google Scholar 

  27. Al-Khayri, J. M. & Naik, P. M. Influence of 2iP and 2,4-D concentrations on accumulation of biomass, phenolics, flavonoids and radical scavenging activity in date palm (Phoenix dactylifera L.) cell suspension culture. Horticulturae 8, 683. https://doi.org/10.3390/horticulturae8080683 (2022).

    Google Scholar 

  28. Al-Khayri, J. M. Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. J. Biotechnol. 9, 477–484 (2010).

    Google Scholar 

  29. Bhati, A., Singh, D., Garg, S. & Sivalingam, P. N. Effect of 2, 4-D and NAA on callus induction in date palm cultivars Halawy and Medjool. Int. J. Farm Sci. 7, 132–136 (2017).

    Google Scholar 

  30. Solangi, N. et al. Developing micropropagation protocols of date palm (Phoenix dactylifera L.) cv Barhi using shoot tip explants. Proc Natl Acad Sci, India, Sect B Biol Sci. 93, 995–1004. https://doi.org/10.1007/s40011-023-01452-9 (2023).

    Google Scholar 

  31. Rathore, M. S., Patel, P. R. & Siddiqui, S. A. Callus culture and plantlet regeneration in date palm (Phoneix dactylifera L.): An important horticultural cash crop for arid and semi-arid horticulture. Physiol. Mol. Biol. Plants 26, 391–398. https://doi.org/10.1007/s12298-019-00733-w (2020).

    Google Scholar 

  32. Baklouti, E. et al. 2, 4-D induction of somaclonal variations in in vitro grown date palm (Phoenix dactylifera L. cv Barhee). Plant Cell Tissue Organ Cult. 150, 191–205 (2022).

    Google Scholar 

  33. Al-Samir, E. A. H., Al-Utbi, S. D. & Abass, M. H. Phytotoxic effect of 2, 4-D and dicamba on date palm (Phoenix dactylifera L.) tissue cultures at initiation stage. Adv. Agric. Bot. 7, 96–108 (2015).

    Google Scholar 

  34. Eldin, Z. A. F. M. & Ibrahim, H. A. Some biochemical changes and activities of antioxidant enzymes in developing date palm somatic and zygotic embryos in vitro. Ann. Agric. Sci. 60, 121–130 (2015).

    Google Scholar 

  35. Zein El Din, A. F. M. et al. Morpho-anatomical and biochemical characterization of embryogenic and degenerative embryogenic calli of Phoenix dactylifera L. Horticulturae 7, 393. https://doi.org/10.3390/horticulturae7100393 (2021).

    Google Scholar 

  36. Ammar, M. A. et al. Enhancing phytochemical content and bioactive aspects in somatic embryogenesis developed from callus of Phoenix dactylifera L. Notulae Bot. Horti Agrobotanici Cluj-Napoca 53, 14374–14374 (2025).

    Google Scholar 

  37. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physio. Plantarum 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).

    Google Scholar 

  38. Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    Google Scholar 

  39. Oliveira, M. S. et al. Negative effects of high 2,4-D in Barhi cultivar. J. Plant Biotechnol. 50, 234–245 (2023).

    Google Scholar 

  40. Islam, F. et al. 2,4-D attenuates salinity-induced toxicity by mediating anatomical changes, antioxidant capacity and cation transporters in the roots of rice cultivars. Sci. Rep. 7, 1–23. https://doi.org/10.1038/s41598-017-09708-x (2017).

    Google Scholar 

  41. Islam, F. et al. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiol. Biochem. 107, 82–95. https://doi.org/10.1016/j.plaphy.2016.05.027 (2016).

    Google Scholar 

  42. Zein El Din, A. F. M. et al. Antioxidants application enhances regeneration and conversion of date palm (Phoenix dactylifera L.) somatic embryos. Plants 11, 2023. https://doi.org/10.3390/plants11152023 (2022).

    Google Scholar 

  43. Tuaimah, M. H., Jaffar, O. N. & Sabti, M. Z. Effect of media type, Cytokinins and Auxins on the formation of embryogenesis of date palm Phoenix dactylifera L. in vitro. J. Kerbala for Agric. Sci. 12(1), 84–95. https://doi.org/10.59658/jkas.v12i1.3243 (2025).

    Google Scholar 

  44. Sinta, M. M., Saptari, R. T., Riyadi, I. & Sumaryono, S. Callus induction and regeneration of date palm (Phoenix dactylifera L.) cv Zambli through somatic embryogenesis from four layers of young leaves explant. Menara Perkebunan 92, 2. https://doi.org/10.22302/iribb.jur.mp.v92i2.588 (2024).

    Google Scholar 

  45. Othmani, A. et al. In vitro initiation, regeneration, and characterization of plants derived from mature tetraploid floral explants of date palm (Phoenix dactylifera L.). Horticulturae 10, 1206. https://doi.org/10.3390/horticulturae10111206 (2024).

    Google Scholar 

  46. Alansi, S. A. L. E. H. et al. An efficient micropropagation protocol via indirect organogenesis from callus of economically valuable crop date palm (Phoenix dactylifera L.) cultivars “Sagai and Khalas”. Pak. J. Bot. 52, 2021–2030 (2020).

    Google Scholar 

  47. Zayed, Z. E. Enhanced indirect somatic embryogenesis from shoot-tip explants of date palm by gradual reductions of 2,4-D concentration. In Date palm biotechnology protocols Vol. 1 (eds Al-Khayri, J. M. et al.) 77–88 (Humana Press, New York, 2017).

    Google Scholar 

  48. Sinta, M. M., Saptari, R. T., Riyadi, I. Tissue culture of four varieties of date palm grown in Indonesia. In: IOP Conference Series: Earth and Environmental Science Vol. 1255, 012019. IOP Publishing (2023).

  49. Kumar, K., Singh, D. & Saroj, P. L. Callus induction, somatic embryogenesis, in vitro plantlet development and ex vitro transplantation of two date palm (Phoenix dactylifera L.) cultivars. Int. J. Chem. Stud. 8, 758–763 (2020).

    Google Scholar 

  50. Resan, A. Z., Al-Mayahi, A. M. & Abdulwahid, A. H. Effect of medium type, TDZ, PG, and their interactions on in vitro regeneration (Phoenix dactylifera L.) cv Barhee. Basrah J. Date Palm Res. 22, 32–51 (2023).

    Google Scholar 

  51. Mangrio, G. S., Simair, A. A., Shumaila, S., Kumar, B. & Mangrio, N. Nutrient media optimization for date palm micropropagation (Phoenix dactylifera L.). Pak. J. Biochem. Biotechnol. 2, 87–96. https://doi.org/10.52700/pjbb.v2i2.48 (2021).

    Google Scholar 

  52. Ibrahim, A. M., Hameed, M. K. & Mohammed, A. In vitro propagation of date palm (Phoenix dactylifera L.) cultivar Jawzi using shoot tip. Basrah J. Agric. Sci. 36, 267–284. https://doi.org/10.37077/25200860.2023.36.2 (2023).

    Google Scholar 

  53. Mazri, M. A., Meziani, R., Elmaataoui, S., Alfeddy, M. N. & Jaiti, F. Assessment of genetic fidelity, biochemical and physiological characteristics of in vitro grown date palm cv. Al-Fayda. Vegetos 32, 333–344. https://doi.org/10.1007/s42535-019-00034-3 (2019).

    Google Scholar 

  54. Kahia, J., Kirika, M., Lubabali, H. & Mantell, S. High-frequency direct somatic embryogenesis and plantlet regeneration from leaves derived from in vitro-germinated seedlings of a Coffea arabica hybrid cultivar. Hort. Sci. 51, 1148–1152 (2016).

    Google Scholar 

  55. Moradi, F. Plant growth regulators past, present and future. Res. Achieve Field Hortic. Crops 5, 71–95 (2016).

    Google Scholar 

  56. Sidik, N. J., Agha, H. M., Alkamil, A. A., Alsayadi, M. M. S. & Mohammed, A. A. A Mini review of plant tissue culture: The role of media optimization, growth regulators in modern agriculture, callus induction and the applications. AUIQ Complement Biol Syst 1(2), 96–109 (2024).

    Google Scholar 

  57. Al-Najm, A., Brauer, S., Trethowan, R. & Ahmad, N. Optimisation of in vitro micropropagation of several date palm cultivars. Aust. J. Crop Sci. 12, 1937–1949 (2018).

    Google Scholar 

  58. Robil, J. M., Awale, P., McSteen, P. & Best, N. B. Gibberellins: Extending the green revolution. J Exper Bot. 76(7), 1837–1853. https://doi.org/10.1093/jxb/erae476 (2025).

    Google Scholar 

  59. Hassan, M. M., Allam, M. A., Shams El Din, I. M., Malhat, M. H. & Taha, R. A. High frequency direct somatic embryogenesis and plantlet regeneration from date palm immature inflorescences using picloram. J. Genet. Eng. Biotechnol. 19, 33. https://doi.org/10.1186/s43141-021-00129-y (2021).

    Google Scholar 

  60. Chawla, R., Guleria, T. & Thakur, A. Role of plant growth regulators in fruit crop production: A comprehensive review. Appl. Fruit Sci. 67(4), 294. https://doi.org/10.1007/s10341-025-01535-z (2025).

    Google Scholar 

  61. Pasternak, T. P. & Steinmacher, D. Plant growth regulation in cell and tissue culture in vitro. Plants 13, 327 (2024).

    Google Scholar 

  62. Samiei, L. et al. Acclimatization protocols for Barhi plantlets. Plant Biotechnol. Rep. 16, 345–356 (2022).

    Google Scholar 

  63. Al-Salim, A.-H., Suhaim, A. A. & Jaffer, O. N. Evaluation of genetic diversity uses SSR and ISSR markers on date palm cultivars that propagated through tissue culture and vegetative propagation. Basrah J. Agric. Sci. 38, 84–95. https://doi.org/10.37077/25200860.2025.38.sp.7 (2025).

    Google Scholar 

  64. El Hadrami, A., Daayf, F., Elshibli, S., Jain, S. M. & El Hadrami, I. Somaclonal variation in date palm. In Date palm biotechnology (eds Jain, S. M. et al.) (Springer, Dordrecht, 2011).

    Google Scholar 

  65. Abdelghaffar, A. M. et al. Genetic diversity assessment and in vitro propagation of some date palm (Phoenix dactylifera L.) varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51(4), 13449–13449 (2023).

    Google Scholar 

  66. Khan, S. A. et al. In vitro inhibitory effects on α-glucosidase and α-amylase level and antioxidant potential of seeds of Phoenix dactylifera L. Asian Pac. J. Trop. Biomed. 6, 322–329. https://doi.org/10.1016/j.apjtb.2015.11.008 (2016).

    Google Scholar 

  67. Sota, V. et al. Challenges in the micropropagation of economically important fruit species in Europe. Plant Cell Tissue Organ Cult. 162, 53. https://doi.org/10.1007/s11240-025-03165-5 (2025).

    Google Scholar 

  68. Zammouri, G. et al. Morphological and biochemical characterization and in vitro regeneration of an elite Tunisian date palm (Phoenix dactylifera L.) cultivar ‘Boufeggous’. J. OASIS Agricul. Sustain. Devel. 7(03), 1–11 (2025).

    Google Scholar 

Download references