Sustainable plant mediated synthesis of cobalt oxide nanoparticles using Uraria picta extract with enhanced biological activity

sustainable-plant-mediated-synthesis-of-cobalt-oxide-nanoparticles-using-uraria-picta-extract-with-enhanced-biological-activity
Sustainable plant mediated synthesis of cobalt oxide nanoparticles using Uraria picta extract with enhanced biological activity

References

  1. Kumari, S. et al. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 27, 1739–1763. https://doi.org/10.1016/j.jmrt.2023.09.291 (2023).

    Google Scholar 

  2. Rana, A., Yadav, K. & Jagadevan, S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J. Clean. Prod. 272, 122880. https://doi.org/10.1016/j.jclepro.2020.122880 (2020).

    Google Scholar 

  3. Naseem, T. & Durrani, T. The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: a review. Environ. Chem. Ecotoxicol. 3, 59–75. https://doi.org/10.1016/j.enceco.2020.12.001 (2021).

    Google Scholar 

  4. Arulmurugan, B. et al. Nanostructured metals: opticlectrical, and mechanical properties. In Mechanics of Nanomaterials and Polymer Nanocomposites 69–85 (2023). https://doi.org/10.1007/978-981-99-2352-6_4

  5. Kumar, S. et al. Optically active nanomaterials and its biosensing applications—a review. Biosensors 13, 85. https://doi.org/10.3390/bios13010085 (2023).

    Google Scholar 

  6. Štukovnik, Z., Fuchs-Godec, R. & Bren, U. Nanomaterials and their recent applications in impedimetric biosensing. Biosensors 13, 899. https://doi.org/10.3390/bios13100899 (2023).

    Google Scholar 

  7. Malik, S., Muhammad, K. & Waheed, Y. Emerging applications of nanotechnology in healthcare and medicine. Molecules 28, 6624. https://doi.org/10.3390/molecules28186624 (2023).

    Google Scholar 

  8. Xia, C. et al. Optimistic and possible contribution of nanomaterial on biomedical applications: a review. Environ. Res. 218, 114921. https://doi.org/10.1016/j.envres.2022.114921 (2023).

    Google Scholar 

  9. Chandrasekhar, N. & Vinay, S. P. Yellow colored blooms of Argemone Mexicana and Turnera ulmifolia mediated synthesis of silver nanoparticles and study of their antibacterial and antioxidant activity. Appl. Nanosci. 7, 851–861. https://doi.org/10.1007/s13204-017-0624-5 (2017).

    Google Scholar 

  10. Vinay, S. P., Chandrasekhar, N. & Chandrappa, C. P. Eco-friendly approach for the green synthesis of silver nanoparticles using flower extracts of Sphagneticola trilobata and study of antibacterial activity. Int. J. Pharm. Biol. Sci. 7, 145–152 (2017).

    Google Scholar 

  11. Jafarzadeh, S. et al. Plant protein-based nanocomposite films: a review on the used nanomaterials, characteristics, and food packaging applications. Crit. Rev. Food Sci. Nutr. 63, 9667–9693. https://doi.org/10.1080/10408398.2022.2070721 (2023).

    Google Scholar 

  12. Deshmukh, R. K., Kumar, L. & Gaikwad, K. K. Halloysite nanotubes for food packaging application: a review. Appl. Clay Sci. 234, 106856. https://doi.org/10.1016/j.clay.2023.106856 (2023).

    Google Scholar 

  13. Hussein, A. R. et al. Acabamento Antimicrobiano de têxteis a partir Da utilização de nanomateriais. Braz J. Biol. 84, e264947. https://doi.org/10.1590/1519-6984.264947 (2023).

    Google Scholar 

  14. Yduzzaman, M., Hassan, A., Anik, H. R., Akter, M. & Islam, M. R. Nanotechnology for high-performance textiles: a promising frontier for innovation. ChemNanoMat 9, e202300205 (2023). https://doi.org/10.1002/cnma.202300205

  15. Deng, A. et al. Unlocking the potential of MOF-derived carbon-based nanomaterials for water purification through advanced oxidation processes: a comprehensive review on the impact of process parameter modulation. Sep. Purif. Technol. 318, 123998. https://doi.org/10.1016/j.seppur.2023.123998 (2023).

    Google Scholar 

  16. Mohamed, H. E. A. et al. Physicochemical and nanomedicine applications of phyto-reduced erbium oxide (Er₂O₃) nanoparticles. AMB Expr. 13, 24. https://doi.org/10.1186/s13568-023-01527-w (2023).

    Google Scholar 

  17. Huseien, G. F. Potential applications of core-shell nanoparticles in construction industry revisited. Appl. Nano. 4, 75–114. https://doi.org/10.3390/applnano4020006 (2023).

    Google Scholar 

  18. Raj, R. S. et al. Z. Nanomaterials in geopolymer composites: a review. Dev. Built Environ. 13, 100114. https://doi.org/10.1016/j.dibe.2022.100114 (2023).

    Google Scholar 

  19. Liu, Y., Zhong, X. & Mohammadian, H. R. Role of carbon nanomaterials in reinforcement of concrete and cement: a new perspective in civil engineering. Alex Eng. J. 72, 649–656. https://doi.org/10.1016/j.aej.2023.04.025 (2023).

    Google Scholar 

  20. Hasen, H. M. & Tuama, R. J. Review about the applications of nanoparticles in batteries. J. Eng. 29, 47–60. https://doi.org/10.31026/j.eng.2023.08.04 (2023).

    Google Scholar 

  21. Vijayakumar, V. et al. R. 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv. Energy Mater. 13, 2203326. https://doi.org/10.1002/aenm.202203326 (2023).

    Google Scholar 

  22. Gong, Y. & Xue, Y. H. Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries. New. Carbon Mater. 38, 438–454. https://doi.org/10.1016/S1872-5805(23)60740-1 (2023).

    Google Scholar 

  23. Hussein, H. S. The state of the Art of nanomaterials and its applications in energy saving. Bull. Natl. Res. Cent. 47, 7. https://doi.org/10.1186/s42269-023-00984-4 (2023).

    Google Scholar 

  24. Yang, M., Ye, Z., Ren, Y., Farhat, M. & Chen, P. Y. Recent advances in nanomaterials used for wearable electronics. Micromachines 14, 603. https://doi.org/10.3390/mi14030603 (2023).

    Google Scholar 

  25. Xu, X. et al. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: techniques, applications, and perspectives. Adv. Colloid Interface Sci. 321, 102987. https://doi.org/10.1016/j.cis.2023.102987 (2023).

    Google Scholar 

  26. Iravani, S. & Varma, R. S. Sustainable synthesis of Cobalt and Cobalt oxide nanoparticles and their catalytic and biomedical applications. Green. Chem. 22, 2643–2661. https://doi.org/10.1039/D0GC00885K (2020).

    Google Scholar 

  27. Said, Z. et al. Nanotechnology-integrated phase change material and nanofluids for solar applications as a potential approach for clean energy strategies: progress, challenges, and opportunities. J. Clean. Prod. 416, 137736. https://doi.org/10.1016/j.jclepro.2023.137736 (2023).

    Google Scholar 

  28. Wang, Q. et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection. Appl. Therm. Eng. 219, 119476. https://doi.org/10.1016/j.applthermaleng.2022.119476 (2023).

    Google Scholar 

  29. Ferry, D. B., Rasheed, T., Anwar, M. T. & Imran, M. Graphene and graphene derived nanomaterials as versatile candidates for organic solar cells and smart windows applications–a review. ChemistrySelect 9, e202301442. https://doi.org/10.1002/slct.202301442 (2024).

    Google Scholar 

  30. Hkiri, K., Mohamed, H. E. A., Ghotekar, S. & Maaza, M. Green synthesis of cerium oxide nanoparticles using Portulaca Oleracea extract: photocatalytic activities. Inorg. Chem. Commun. 162, 112243. https://doi.org/10.1016/j.inoche.2024.112243 (2024).

    Google Scholar 

  31. Mohamed, H. E. A., Hilal-Alnaqbi, A., Dagher, S., Akhozheya, B. & Maaza, M. Green synthesis of CdWO₄ nanorods with enhanced photocatalytic activity utilizing hyphaene Thebaica fruit. ChemistrySelect 7, e202201442. https://doi.org/10.1002/slct.202201442 (2022).

    Google Scholar 

  32. Omeiza, L. A. et al. Nanostructured electrocatalysts for advanced applications in fuel cells. Energies 16, 1876. https://doi.org/10.3390/en16041876 (2023).

    Google Scholar 

  33. Haque, S., Nasar, A., Duteanu, N. & Pandey, S. ul, Carbon-based nanomaterials used in biofuel cells–a review. Fuel 331, 125634 (2023). https://doi.org/10.1016/j.fuel.2022.125634

  34. Bhatt, R., Shukla, P., Mishra, A. & Bajpai, A. K. Emerging applications of nano-modified bio-fuel cells. Nanotechnol. Adv. Biofuel. 213–242. https://doi.org/10.1016/B978-0-323-91759-9.00002-2 (2023).

  35. Zhang, D. et al. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res. 16, 11938–11958. https://doi.org/10.1007/s12274-022-4917-y (2023).

    Google Scholar 

  36. Abedi-Firoozjah, R. et al. Nanomaterial-based sensors for the detection of pathogens and microbial toxins in the food industry: a review on recent progress. Coord. Chem. Rev. 500, 215545. https://doi.org/10.1016/j.ccr.2023.215545 (2024).

    Google Scholar 

  37. Lawaniya, S. D. et al. Functional nanomaterials in flexible gas sensors: recent progress and future prospects. Mater. Today Chem. 29, 101428. https://doi.org/10.1016/j.mtchem.2023.101428 (2023).

    Google Scholar 

  38. Saleh, T. A. & Fadillah, G. Green synthesis protocols, toxicity, and recent progress in nanomaterial-based environmental chemical sensors applications. Trends Environ. Anal. Chem. 39, e00204. https://doi.org/10.1016/j.teac.2023.e00204 (2023).

    Google Scholar 

  39. Ghotekar, S. et al. A novel approach towards biosynthesis of BiVO4 nanoparticles and their anticancer, antioxidant, and photocatalytic activities. J. Sol-Gel Sci. Technol. 109, 784–794. https://doi.org/10.1007/s10971-024-06317-9 (2024).

    Google Scholar 

  40. Matussin, S. N. et al. α-Glucosidase inhibitory activity and cytotoxicity of CeO₂ nanoparticles fabricated using a mixture of different cerium precursors. ACS Omega. 9, 157–165. https://doi.org/10.1021/acsomega.3c02524 (2023).

    Google Scholar 

  41. El-Khawaga, A. M. & Zidan, A. Abd El-Mageed, A. I. Preparation methods of different nanomaterials for various potential applications: a review. J. Mol. Struct. 1281, 135148. https://doi.org/10.1016/j.molstruc.2023.135148 (2023).

    Google Scholar 

  42. Salem, S. S. A mini review on green nanotechnology and its development in biological effects. Arch. Microbiol. 205, 128. https://doi.org/10.1007/s00203-023-03467-2 (2023).

    Google Scholar 

  43. Vittaya, L., Chalad, C. & Sirimahachai, U. Green synthesis and biological activities of zinc oxide nanoparticles using ampelocissus martini rhizome extract. ChemistrySelect 9, e202304671. https://doi.org/10.1002/slct.202304671 (2024).

    Google Scholar 

  44. Borah, D. et al. Facile green synthesis of highly stable, water dispersible carbohydrate conjugated Ag, Au and Ag–Au biocompatible nanoparticles: catalytic and antimicrobial activity. Mater. Today Commun. 37, 107096. https://doi.org/10.1016/j.mtcomm.2023.107096 (2023).

    Google Scholar 

  45. Sheikh, S. et al. Biosynthesis of copper oxide nanoparticles using Uraria picta (Jacq.) plant extract and its characterization. Bioscan 18, 29–34 (2025). https://thebioscan.com/index.php/pub/article/view/487

    Google Scholar 

  46. Dubadi, R., Huang, S. D. & Jaroniec, M. Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials 16, 1460. https://doi.org/10.3390/ma16041460 (2023).

    Google Scholar 

  47. Mali, S. C., Dhaka, A., Sharma, S. & Trivedi, R. Review on biogenic synthesis of copper nanoparticles and its potential applications. Inorg. Chem. Commun. 149, 110448. https://doi.org/10.1016/j.inoche.2023.110448 (2023).

    Google Scholar 

  48. Nguyen, D. T. C. et al. New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: a review. Sci. Total Environ. 857, 159278. https://doi.org/10.1016/j.scitotenv.2022.159278 (2023).

    Google Scholar 

  49. Singh, J., Kaur, G. & Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol. 1, 9 (2016).

    Google Scholar 

  50. Raman, V. et al. Synthesis of Co₃O₄ nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp. Ther. Med. 11, 553–560. https://doi.org/10.3892/etm.2015.2946 (2016).

    Google Scholar 

  51. Khalil, A. T. et al. Biosynthesis of iron oxide (Fe₂O₃) nanoparticles via aqueous extracts of Sageretia thea (Osbeck) and their pharmacognostic properties. Green. Chem. Lett. Rev. 10, 186–201. https://doi.org/10.1080/17518253.2017.1339831 (2017).

    Google Scholar 

  52. Singh, A. K. A review on plant extract-based route for synthesis of Cobalt nanoparticles: photocatalytic, electrochemical sensing and antibacterial applications. Curr. Res. Green. Sustain. Chem. 5, 100270. https://doi.org/10.1016/j.crgsc.2022.100270 (2022).

    Google Scholar 

  53. Diallo, A., Beye, A. C., Doyle, T. B., Park, E. & Maaza, M. Green synthesis of Co₃O₄ nanoparticles via Aspalathus linearis: physical properties. Green. Chem. Lett. Rev. 8, 30–36. https://doi.org/10.1080/17518253.2015.1082646 (2015).

    Google Scholar 

  54. Askarinejad, A., Bagherzadeh, M. & Morsali, A. Catalytic performance of Mn₃O₄ and Co₃O₄ nanocrystals prepared by sonochemical method in epoxidation of styrene and cyclooctene. Appl. Surf. Sci. 256, 6678–6682. https://doi.org/10.1016/j.apsusc.2010.04.069 (2010).

    Google Scholar 

  55. Kaviyarasu, K., Raja, A. & Devarajan, P. A. Structural Elucidation and spectral characterizations of Co₃O₄ nanoflakes. Spectrochim Acta Mol. Biomol. Spectrosc. 114, 586–591. https://doi.org/10.1016/j.saa.2013.04.126 (2013).

    Google Scholar 

  56. Akhlaghi, N., Najafpour-Darzi, G. & Younesi, H. Facile and green synthesis of Cobalt oxide nanoparticles using ethanolic extract of Trigonella foenum-graecum (Fenugreek) leaves. Adv. Powder Technol. 31, 3562–3569. https://doi.org/10.1016/j.apt.2020.07.004 (2020).

    Google Scholar 

  57. Asha, G., Rajeshwari, V., Stephen, G., Gurusamy, S. & D. RachelC. J. Eco-friendly synthesis and characterization of Cobalt oxide nanoparticles by allium sativum species and its photocatalytic activity. Mater. Today Proc. 48, 486–493. https://doi.org/10.1016/j.matpr.2021.02.338 (2022).

    Google Scholar 

  58. Gaikar, P. S. et al. Green synthesis of Cobalt oxide thin films as an electrode material for electrochemical capacitor application. Curr. Res. Green. Sustain. Chem. 5, 100265. https://doi.org/10.1016/j.crgsc.2022.100265 (2022).

    Google Scholar 

  59. Chattopadhyay, S. et al. Surface-modified Cobalt oxide nanoparticles: new opportunities for anti-cancer drug development. Cancer Nanotechnol. 3, 13–23. https://doi.org/10.1007/s12645-012-0026-z (2012).

    Google Scholar 

  60. Khalil, A. T. et al. Physical properties, biological applications and biocompatibility studies on biosynthesized single phase Cobalt oxide (Co₃O₄) nanoparticles via Sageretia thea (Osbeck). Arab. J. Chem. 13, 606–619. https://doi.org/10.1016/j.arabjc.2017.07.004 (2020).

    Google Scholar 

  61. Ajarem, J. S., Maodaa, S. N., Allam, A. A., Taher, M. M. & Khalaf, M. Benign synthesis of Cobalt oxide nanoparticles containing red algae extract: antioxidant, antimicrobial, anticancer, and anticoagulant activity. J. Clust Sci. 33, 717–728. https://doi.org/10.1007/s10876-021-02004-9 (2022).

    Google Scholar 

  62. Rasheed, T., Nabeel, F., Bilal, M. & Iqbal, H. M. Biogenic synthesis and characterization of Cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and Methyl orange dyes. Biocatal. Agric. Biotechnol. 19, 101154. https://doi.org/10.1016/j.bcab.2019.101154 (2019).

    Google Scholar 

  63. Iqbal, J. et al. Biogenic synthesis of green and cost-effective Cobalt oxide nanoparticles using Geranium Wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme Inhibition properties. Mater. Res. Express. 6, 115407. https://doi.org/10.1088/2053-1591/ab4f04 (2019).

    Google Scholar 

  64. Hou, H. et al. Retracted article: novel green synthesis and antioxidant, cytotoxicity, antimicrobial, antidiabetic, anticholinergics, and wound healing properties of Cobalt nanoparticles containing Ziziphora clinopodioides lam leaves extract. Sci. Rep. 10, 12195. https://doi.org/10.1038/s41598-020-68951-x (2020).

    Google Scholar 

  65. Momen Eslamiehei, F., Mashreghi, M. & Matin, M. M. Advancing colorectal cancer therapy with biosynthesized Cobalt oxide nanoparticles: a study on their antioxidant, antibacterial, and anticancer efficacy. Cancer Nanotechnol. 15, 22. https://doi.org/10.1186/s12645-024-00258-2 (2024).

    Google Scholar 

  66. Bhusare, B. P., Ahire, M. L., John, C. K. & Nikam, T. D. Uraria picta: a comprehensive review on evidences of utilization and strategies of conservation. J. Phytol. 13, 41–47. https://doi.org/10.25081/jp.2021.v13.7028 (2021).

    Google Scholar 

  67. Ved, D. K. & Goraya, G. S. Demand and supply of medicinal plants in India. NMPB FRLHT. 18 (85), 210–252 (2007).

    Google Scholar 

  68. Vats, S., Kaushal, C., Timko, M. P. & Ganie, S. A. Uraria picta: a review on its ethnobotany, bioactive compounds, Pharmacology and commercial relevance. S Afr. J. Bot. 167, 333–354. https://doi.org/10.1016/j.sajb.2024.02.008 (2024).

    Google Scholar 

  69. Rahman, M. M., Gibbons, S. & Gray, A. I. Isoflavanones from Uraria picta and their antimicrobial activity. Phytochemistry 68, 1692–1697. https://doi.org/10.1016/j.phytochem.2007.04.015 (2007).

    Google Scholar 

  70. Chole, P. & Manjunath, B. T. Green synthesis of cobalt oxide nanoparticles with in vitro cytotoxicity assessment using pomegranate (Punica granatum L.) seed oil: a promising approach for antimicrobial and anticancer applications. Pharm. Sci. Technol. 11, e (2024). (2024) https://doi.org/10.14719/pst.2024.11.2

  71. Mane, J. A., Nagore, D. H. & Chitlange, S. O. Uraria picta (Jacq.): a review on ethnomedical uses, phytochemistry, and biological activities. Asian J. Pharm. Clin. Res. 14, 40–44. https://doi.org/10.22159/ajpcr.2021v14i3.40383 (2021).

    Google Scholar 

  72. Mohamed, H. Optical properties of bio-engineered nano-scaled Y₂O₃ particles via Hyphaene Thebaica natural extract. J. Phys. Conf. Ser. 2970, 012003. https://doi.org/10.1088/1742-6596/2970/1/012003 (2025).

    Google Scholar 

  73. Akash, M. S. H. & Rehman, K. Essentials of Pharmaceutical Analysis 167–174 (Springer, 2020). https://doi.org/10.1007/978-981-15-2098-0

  74. Kalsi, P. S. Spectroscopy of Organic Compounds (New Age International, 2007).

  75. Wang, Z. L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497–1514. https://doi.org/10.1002/adma.200300384 (2003).

    Google Scholar 

  76. Fultz, B. & Howe, J. M. Transmission Electron Microscopy and Diffractometry of Materials (Springer, 2008). https://doi.org/10.1007/978-3-540-73886-2_7

  77. Thomson, L., Saiju, A., Femina, C., Ph, D. & Dissertation St. Teresa’s College, Ernakulam (2019).

  78. Bertolotti, F., Moscheni, D., Guagliardi, A. & Masciocchi, N. When crystals go nano: the role of advanced X-ray total scattering methods in nanotechnology. Eur. J. Inorg. Chem. 3789–3803. https://doi.org/10.1002/ejic.201800534 (2018).

  79. Perez, C. Antibiotic assay by agar-well diffusion method. Acta Biol. Med. Exp. 15, 113–115 (1990).

    Google Scholar 

  80. Warrier, P. K. Indian Medicinal Plants: A Compendium of 500 Species, Vol. 5Orient Blackswan, (1993).

  81. Harborne, A. J. Phytochemical Methods: A Guide To Modern Techniques of Plant Analysis (Springer Science & Business Media, 1998).

  82. Ghosh, K., Rawal, P. & Pramanik, S. Vivo antioxidant and hypoglycaemic potentials of Rivina humilis extract against streptozotocin-induced diabetes and its complications in Wistar rats. J. Diabetes Metab. Disord. 22, 1373–1383. https://doi.org/10.1007/s40200-023-01258-6 (2023).

    Google Scholar 

  83. Perumal, V. & Ilangkumaran, M. The influence of copper oxide nanoparticle added Pongamia Methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232, 791–802. https://doi.org/10.1016/j.fuel.2018.04.129 (2018).

    Google Scholar 

  84. Mane, P. C. et al. Green adeptness in synthesis of non-toxic copper and Cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotechnol. 14, 79. https://doi.org/10.1186/s12645-023-00226-2 (2023).

    Google Scholar 

  85. Singh, J., Mehta, A., Rawat, M., Basu, S. & Chandel, S. Allium sativum–mediated phytogenic synthesis of Cobalt oxide nanoparticles and their antibacterial potential. Appl. Nanosci. 11, 2807–2817. https://doi.org/10.1007/s13204-020-01513-0 (2021).

    Google Scholar 

  86. Sahoo, S. K., Parida, U. K., Nayak, P. L., Nayak, S. & Panda, S. Green synthesis of Cobalt oxide nanoparticles using Hibiscus rosa-sinensis and its antimicrobial activity. Asian J. Chem. 27, 3453–3456. https://doi.org/10.14233/ajchem.2015.18674 (2015).

    Google Scholar 

  87. Asha, G., Rajeshwari, V., Stephen, G., Gurusamy, S. & Rachel, D. C. J. Eco-friendly synthesis and characterization of cobalt oxide nanoparticles and its photocatalytic activity. Mater. Today Proc. 48, 486–493 (2022). https://doi.org/10.3390/w15050910

  88. Govindasamy, R. et al. Green synthesis and characterization of Cobalt oxide nanoparticles using Psidium Guajava leaves extracts and their photocatalytic and biological activities. Molecules 27, 5646. https://doi.org/10.3390/molecules27175646 (2022).

    Google Scholar 

  89. Abdi, M., Yusuf, Z. & Sasikumar, J. M. Phyto-fabrication of Cobalt oxide nanoparticles from Ocimum gratissimum L. leaf and flower extracts and their antimicrobial activities. Open. Biotechnol. J. 17, 1–10. https://doi.org/10.2174/0118740707261876230919053208 (2023).

    Google Scholar 

  90. Hemalatha, M. et al. Application of green synthesized ag and Cu nanoparticles for the control of bruchids and their impact on seed quality and yield in Greengram. Heliyon 10, e31551. https://doi.org/10.1016/j.heliyon.2024.e31551 (2024).

    Google Scholar 

  91. Al-Qasmi, N. Sustainable and efficacy approach of green synthesized Cobalt oxide (Co₃O₄) nanoparticles and evaluation of their cytotoxicity activity on cancerous cells. Molecules 27, 8163. https://doi.org/10.3390/molecules27238163 (2022).

    Google Scholar 

  92. Mubraiz, N., Bano, A., Mahmood, T. & Khan, N. Microbial and plant-assisted synthesis of Cobalt oxide nanoparticles and their antimicrobial activities. Agronomy 11, 1607. https://doi.org/10.3390/agronomy11081607 (2021).

    Google Scholar 

  93. Kgosiemang, I. K. et al. Green synthesis of magnesium and Cobalt oxide nanoparticles using Euphorbia tirucalli: characterization and potential application for breast cancer Inhibition. Inorg. Nano-Met Chem. 50, 1070–1080. https://doi.org/10.1080/24701556.2020.1735422 (2020).

    Google Scholar 

  94. Moawad, R. et al. Biosynthesis and health-promoting traits of green synthesized Cobalt oxide nanoparticles. Sci. Rep. 15, 727. https://doi.org/10.1038/s41598-024-82679-y (2025).

    Google Scholar 

  95. Matyi, R. J. & MacCuspie, R. I. IEEE Nanotechnol Mag 14, 1–12 (2020).

    Google Scholar 

  96. Khodaei, M. & Petaccia, L. (eds) X-ray Characterization of Nanostructured Energy Materials by Synchrotron Radiation (BoD–Books on Demand, 2017).

  97. Masadeh, S. et al. Phys. Rev. B 76, 1–10 (2007).

    Google Scholar 

  98. Honkeldieva, M. T., Li, H., Bukhorov, K. X., Ahmedov, H. A. & Yulbarsova, M. V. Fourier transformation of infrared spectroscopy and X-ray diffraction analyses of NPK mineral and biomineral fertilizers. IOP Conf. Ser. : Earth Environ. Sci. 868, 012042. https://doi.org/10.1088/1755-1315/868/1/012042 (2021).

    Google Scholar 

  99. Manikandan, R. et al. Eco-friendly synthesis, spectral, morphological analysis of Cobalt oxide nanoparticles (Co₃O₄NPs) mediated by leaves extract of Pedalium murex L. and its antibacterial, antifungal, antioxidant and anticancer (MCF-7 cell line) study. Indian J. Sci. Technol. 18, 102–112. https://doi.org/10.17485/IJST/v18i2.2816 (2025).

    Google Scholar 

  100. Ogunyemi, S. O. et al. Cobalt oxide nanoparticles: an effective growth promoter of Arabidopsis plants and nano-pesticide against bacterial leaf blight pathogen in rice. Ecotoxicol. Environ. Saf. 257, 114935. https://doi.org/10.1016/j.ecoenv.2023.114935 (2023).

    Google Scholar 

  101. Ghodake, G., Seo, Y. D. & Lee, D. S. Hazardous phytotoxic nature of Cobalt and zinc oxide nanoparticles assessed using Allium Cepa. J. Hazard. Mater. 186, 952–955. https://doi.org/10.1016/j.jhazmat.2010.11.039 (2011).

    Google Scholar 

  102. Raeisi, M. et al. Magnetic Cobalt oxide nanosheets: green synthesis and in vitro cytotoxicity. Bioprocess. Biosyst Eng. 44, 1423–1432. https://doi.org/10.1007/s00449-021-02518-6 (2021).

    Google Scholar 

  103. Aldeen, T. S., Mohamed, H. E. A. & Maaza, M. ZnO nanoparticles prepared via a green synthesis approach: physical properties, photocatalytic and antibacterial activity. J. Phys. Chem. Solids. 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313 (2022).

    Google Scholar 

  104. Vinay, S. P., Udayabhanu, U. & Lalithamba, H. S. Plant-mediated green synthesis of ag nanoparticles using Rauvolfia tetraphylla (L.) flower extracts: characterization, biological activities, and screening of the catalytic activity in formylation reaction. Sci. Iran. 27, 3353–3366. https://doi.org/10.24200/sci.2019.51275.2093 (2020).

    Google Scholar 

  105. Pawar, A., Mungole, A. & Naktode, K. Biosynthesis of CuO nanoparticles using plant extract as a precursor: characterization, antibacterial, and antioxidant activity. Nano Biomed. Eng. 15 https://doi.org/10.26599/NBE.2023.9290027 (2023). [Article ID not provided].

  106. Pawar, A., Mungole, A. & Naktode, K. Biogenic copper oxide nanoparticles synthesized from whole plant extract of Nicotiana Plumbaginifolia Viv.: characterization, antibacterial, and antioxidant properties. J. Turk. Chem. Soc. A: Chem. 11, 1005–1016. https://doi.org/10.18596/jotcsa.1422924 (2024).

    Google Scholar 

  107. Sheikh, S. et al. Greener synthesis of copper oxide nanoparticles using Rivina humilis L. plant extract, characterization and their biological evaluation for antimicrobial and antioxidant activity. ChemSelect 9 (e202401219). https://doi.org/10.1002/slct.202401219 (2024).

  108. Pandhurnekar, C. P., Pandhurnekar, H. C., Yadao, B. G., Mungole, A. J. & Mohabe, P. Recent advances in rare earth metal-doped nanomaterials and their applications in biomedical imaging techniques. AIP Conf. Proc. 2974, 020044 (2024). https://doi.org/10.1063/5.0181801

  109. Mungole, A. J. et al. Biological synthesis of silver nanoparticles for antimicrobial applications: a short review. J. Adv. Sci. Res 12, 7–10 (2021).

  110. Vinay, S. P., Udayabhanu, G., Chandrappa, C. P. & Chandrasekhar, N. Enhanced photocatalysis, photoluminescence, and antibacterial activities of nanosized ag: green synthesized via Rauvolfia tetraphylla (devil pepper). SN Appl. Sci. 1, 477. https://doi.org/10.1007/s42452-019-0437-0 (2019).

    Google Scholar 

Download references