References
-
Huang, C., Dong, H., Su, Y., Wu, Y., Narron, R., & Yong, Q. Synthesis of carbon quantum Dot nanoparticles derived from byproducts in bio-refinery process for cell imaging and in vivo bioimaging. Nanomaterials 9, 387 (2019).
-
Gomase, A., Sangale, S., Mundhe, A., Gadakh, P. & Nikam, V. Quantum dots: method of Preparation and biological application. J. Drug Deliv. Ther. 9, 670–672 (2019).
-
Kalifathullah, S. K. & Sundaramurthy, D. Exploration of biological activities of green N-Carbon quantum Dots and photocatalytic studies of ZnO@ N-CQDs. Emergent Mater. 7, 2755–2766 (2024).
-
Sharma, A. & Das, J. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. J. Nanobiotechnol. 17, 92 (2019).
-
Du, Y. & Guo, S. Chemically doped fluorescent carbon and graphene quantum Dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale 8, 2532–2543 (2016).
-
Hoan, B. T., Tam, P. D. & Pham, V. H. Green synthesis of highly luminescent carbon quantum dots from lemon juice. J. Nanotechnol. 2019, 2852816 (2019).
-
Yadav, P. K., Chandra, S., Kumar, V., Kumar, D. & Hasan, S. H. Carbon quantum dots: synthesis, structure, properties, and catalytic applications for organic synthesis. Catalysts 13, 422 (2023).
-
Nair, A., Haponiuk, J. T., Thomas, S. & Gopi, S. Natural carbon-based quantum Dots and their applications in drug delivery: A review. Biomed. Pharmacother. 132, 110834 (2020).
-
Dhanush, C., Aravindh, S., Jesreena, J. S., Nagadharshini, R., Jano, N., Almeer, R., & KP Velu, S. Biomimetic synthesis of carbon Dots from mimosa pudica leaves for enhanced bioimaging. Waste Biomass Valoriz. 16, 713–721 (2025).
-
Pandiyan, S., Arumugam, L., Srirengan, S.P., Pitchan, R., Sevugan, P., Kannan, K., Pitchan, G., Hegde, T.A. & Gandhirajan, V. Biocompatible carbon quantum Dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications. ACS Omega. 5, 30363–30372 (2020).
-
Wang, X., Wu, T., Yang, Y., Zhou, L., Wang, S., Liu, J., Zhao, Y., Zhang, M., Zhao, Y., Qu, H. & Kong, H. Ultrasmall and highly biocompatible carbon Dots derived from natural plant with amelioration against acute kidney injury. J. Nanobiotechnol. 21, 63 (2023).
-
Tian, X., Zeng, A., Liu, Z., Zheng, C., Wei, Y., Yang, P., Zhang, M., Yang, F. & Xie, F.Carbon quantum dots: in vitro and in vivo studies on biocompatibility and biointeractions for optical imaging. Int. J. Nanomedicine 15, 6519–6529 (2020).
-
Latif, Z., Shahid, K., Anwer, H., Shahid, R., Ali, M., Lee, K. H., & Alshareef, M. Carbon quantum Dots (CQDs) modified polymers: a mini review of non-optical applications. Nanoscale 16, 2265–2285 (2024).
-
Gowtham, P., Girigoswami, K., Prabhu, A. D., Pallavi, P., Thirumalai, A., Harini, K., & Girigoswami, A. Hydrogels of alginate derivative‐encased nanodots featuring carbon‐coated manganese ferrite cores with gold shells to offer antiangiogenesis with multimodal imaging‐based theranostics. Adv. Therapeut. 7, 2400054 (2024).
-
González, M. & Romero, M. P. Surface-Modified carbon Dots for cancer therapy: integrating diagnostic and therapeutic applications. Int. J. Nanomedicine 20, 7715–7741 (2025).
-
Molaei, M. J. Carbon quantum Dots and their biomedical and therapeutic applications: a review. RSC Adv. 9, 6460–6481 (2019).
-
Noel, K. J., Umashankar, M. S. & Narayanasamy, D. & Umashankar Sr, M. S. Exploring research on the drug loading capacity of quantum Dots. Cureus 16, e67869 (2024).
-
Kirubanithy, K. & Santhanam, A. A pH-responsive nanocarrier of peanut shell carbon quantum Dots as a promising delivery of doxorubicin for cancer therapy. Sci. Rep. 15, 33885 (2025).
-
Fatima, I., Rahdar, A., Sargazi, S., Barani, M., Hassanisaadi, M., & Thakur, V. K. Quantum dots: synthesis, antibody conjugation, and HER2-receptor targeting for breast cancer therapy. J. Funct. Biomater. 12, 75 (2021).
-
Kazemi, K., Amini, A., Omidifar, N., Aghabdollahian, S., Raee, M. J., & Gholami, A. Empowering rapid diagnosis and treatment of glioblastoma with biofunctionalized carbon quantum dots: a review. Cancer Nanotechnol. 16, 13 (2025).
-
Lee, C., Verma, R., Byun, S., Jeun, E.J., Kim, G.C., Lee, S., Kang, H.J., Kim, C.J., Sharma, G., Lahiri, A. & Paul, S. Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nat. Commun. 12, 3611 (2021).
-
Liu, Y., Wu, Q., Wu, X., Algharib, S.A., Gong, F., Hu, J., Luo, W., Zhou, M., Pan, Y., Yan, Y. & Wang, Y. Structure, preparation, modification, and bioactivities of β-glucan and Mannan from yeast cell wall: A review. Int. J. Biol. Macromol. 173, 445–456 (2021).
-
Jofre, F. M., Queiroz, S. D. S., Sanchez, D. A., Arruda, P. V., Santos, J. C. D., & Felipe, M. D. G. D. A. Biotechnological potential of yeast cell wall: an overview. Biotechnol. Progr. 40, e3491 (2024).
-
Yousefi, L. Yeast mannan: Structure, extraction and bioactivity. Appl. Food Biotechnol. 10, 155–164 (2023).
-
Gan, J., Chen, L., Chen, Z., Zhang, J., Yu, W., Huang, C., Wu, Y. & Zhang, K. Lignocellulosic biomass-based carbon dots: synthesis processes, properties, and applications. Small 19, 2304066 (2023).
-
Yuan, H., Lan, P., He, Y., Li, C. & Ma, X. Effect of the modifications on the physicochemical and biological properties of β-glucan—A critical review. Molecules 25, 57 (2019).
-
Chioru, A. & Chirsanova, A. β-Glucans: Characterization, extraction Methods, and valorization. Food Nutr. Sci. 14, 963–983 (2023).
-
Su, Y., Chen, L., Yang, F. & Cheung, P. C. Beta-d-glucan-based drug delivery system and its potential application in targeting tumor associated macrophages. Carbohydr. Polym. 253, 117258 (2021).
-
Yadav, R., Lahariya, V. & Bansal, V. Evaluation of thermal behavior and properties of carbon Dots prepared by green synthesis. ECS Trans. 107, 14445 (2022).
-
Dhanush, C. & Sethuraman, M. Independent hydrothermal synthesis of the undoped, nitrogen, Boron and sulphur doped biogenic carbon nanodots and their potential application in the catalytic chemo-reduction of Alizarine yellow R Azo dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 260, 119920 (2021).
-
Dua, S., Kumar, P., Pani, B., Kaur, A., Khanna, M., & Bhatt, G. Stability of carbon quantum dots: a critical review. RSC Adv. 13, 13845–13861 (2023).
-
Kumar, A., Kumar, I. & Gathania, A. K. Synthesis, characterization and potential sensing application of carbon Dots synthesized via the hydrothermal treatment of cow milk. Sci. Rep. 12, 22495 (2022).
-
Azam, N., Ali, N., Javaid Khan, T. & M. & Carbon quantum Dots for biomedical applications: review and analysis. Front. Mater. 8, 700403 (2021).
-
Dhanush, C., Aravind, M. K., Ashokkumar, B. & Sethuraman, M. G. Synthesis of blue emissive fluorescent nitrogen doped carbon Dots from Annona squamosa fruit extract and their diverse applications in the field of catalysis and bio-imaging. J. Photochem. Photobiol. A: Chem. 432, 114097 (2022).
-
Mirseyed, P. S., Arjmand, S., Rahmandoust, M., Kheirabadi, S. & Anbarteh, R. Green synthesis of yeast cell wall-derived carbon quantum Dots with multiple biological activities. Heliyon 10, e29440 (2024).
-
Asare, S. O. Optimized Acid/base Extraction and Structural Characterization of β-glucan from Saccharomyces Cerevisiae (East Tennessee State University, 2015).
-
Bian, Z., Gomez, E., Gruebele, M., Levine, B. G., Link, S., Mehmood, A., & Nie, S. Bottom-up carbon dots: purification, single-particle dynamics, and electronic structure. Chem. Sci. 16, 4195–4212 (2025).
-
Tauc, J., Grigorovici, R. & Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b). 15, 627–637 (1966).
-
Jumardin, J., Maddu, A., Santoso, K. & Isnaeni, I. Synthesis of carbon dots (CDS) and determination of optical gap energy with Tauc plot method. Jambura Phys. J. 3, 73–86 (2021).
-
Swebocki, T., Barras, A. & Kocot, A. M. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assays Using Broth Microdilution Method. (2023).
-
Benzie, I. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239, 70–76 (1996).
-
Alharthi, A.H., Al-Shehri, S.H.A., Albarqi, M.A.A., Alshehri, M.S., Alshehri, A.M., Amer, A.M., Alshehri, M.H., Alshehri, A.H.S., Alshehri, S.H.S. & Alassiry, A.M.A. Laboratory markers of inflammation: CRP and ESR in clinical practice. J. Int. Crisis Risk Communication Res. 7, 2376 (2024).
-
Boruah, A. & Saikia, B. K. Chemical Fabrication of Efficient Blue-luminescent Carbon Quantum Dots from Coal Washery Rejects (Waste) for Detection of Hg2 + and Cr6 + Ions in Water. ChemistrySelect 7, e202104567 (2022).
-
Dhanush, C. & Sethuraman, M. Influence of phyto-derived nitrogen doped carbon Dots from the seeds of Azadirachta indica on the NaBH4 reduction of Safranin-O dye. Diam. Relat. Mater. 108, 107984 (2020).
-
Shukla, G., Gaurav, S. S., Rani, V., Singh, A., Rani, P., Verma, P., & Kumar, B. Evaluation of larvicidal effect of mycogenic silver nanoparticles against white Grubs (Holotrichia sp). J. Adv. Sci. Res. 11, 296–304 (2020).
-
Wang, J., Zhang, X., & Li, Y. Recent advances in carbon quantum dots derived from natural polymers: Synthesis, properties, and applications. J. Carbon Res. 10, 45–67 (2024).
-
Emam, H. E. Clustering of photoluminescent carbon quantum Dots using biopolymers for biomedical applications. Biocatal. Agric. Biotechnol. 42, 102382 (2022).
-
Thodikayil, A. T., Sharma, S. & Saha, S. Engineering carbohydrate-based particles for biomedical applications: strategies to construct and modify. ACS Appl. Bio Mater. 4, 2907–2940 (2021).
-
Mozdbar, A., Nouralishahi, A., Fatemi, S. & Mirakhori, G. in AIP Conference Proceedings. (AIP Publishing).
-
Wu, Y., Li, C., van der Mei, H. C., Busscher, H. J. & Ren, Y. Carbon quantum Dots derived from different carbon sources for antibacterial applications. Antibiotics 10, 623 (2021).
-
Kong, J., Wei, Y., Zhou, F., Shi, L., Zhao, S., Wan, M., & Zhang, X. Carbon quantum dots: properties, preparation, and applications. Molecules 29, 2002 (2024)
-
Kalifathullah, S. K., Alaguvel, S. & Sundaramurthy, D. Efficient synthesis of green nitrogen-doped carbon Dots as a versatile nanoprobe for antibacterial, cytotoxic, in-vitro imaging, and anti-counterfeit applications. Inorg. Chem. Commun. 178, 114473 (2025).
-
Hill, S. & Galan, M. C. Fluorescent carbon Dots from mono-and polysaccharides: synthesis, properties and applications. Beilstein J. Org. Chem. 13, 675–693 (2017).
-
Xu, X., Wang, X., Du, W., Liu, S., Qiao, Z., & Zhou, Y. Hydrothermal synthesis of biomass-derived cqds: advances and applications. Nanatechnol. Reviews 14, 20250184 (2025).
-
Lesage, G. & Bussey, H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70, 317–343 (2006).
-
Sadeghi, A., Purabdolah, H., Hajinia, F., Shahryari, S., Taheri, F., Ebrahimi, M., Assadpour, E. & Jafari, S.M. Emerging functionalities of yeast cell-wall components; the value-added food-grade pre-and post-biotics. Appl. Food Res. 5, 101072 (2025).
-
Shokri, H., Asadi, F. & Khosravi, A. R. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 22, 414–421 (2008).
-
Aimanianda, V., Clavaud, C., Simenel, C., Fontaine, T., Delepierre, M., & Latge, J. P. Cell wall β-(1, 6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis. J. Biol. Chem. 284, 13401–13412 (2009).
-
Bhagat, P., Patil, K., Bodas, D. & Paknikar, K. Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight. RSC Adv. 5, 59491–59494 (2015).
-
Huang, J., Chen, Y., Leng, K., Liu, S., Chen, Z., Chen, L., Wu, D. & Fu, R. Morphology-persistent carbonization of self-assembled block copolymers for multifunctional coupled two-dimensional porous carbon hybrids. Chem. Mater. 32, 8971–8980 (2020).
-
Singh, R. P. & Bhardwaj, A. β-glucans: A potential source for maintaining gut microbiota and the immune system. Front. Nutr. 10, 1143682 (2023).
-
Zhong, X., Wang, G., Li, F., Fang, S., Zhou, S., Ishiwata, A., Tonevitsky, A.G., Shkurnikov, M., Cai, H. & Ding, F. Immunomodulatory effect and biological significance of β-glucans. Pharmaceutics 15, 1615 (2023)
-
Ul Ashraf, Z., Shah, A., Gani, A., Gani, A., Masoodi, F. A., & Noor, N. Nanoreduction as a technology to exploit β-Glucan from cereal and fungal sources for enhancing its nutraceutical potential. Carbohydr. Polym. 258, 117664 (2021).
-
Gautério, G. V., Silvério, S. I. D. C., Egea, M. B. & Lemes, A. C. β-glucan from brewer’s spent yeast as a techno-functional food ingredient. Front. Food Sci. Technol. 2, 1074505 (2022).
-
Schauss, A. G., Glavits, R., Endres, J., Jensen, G. S. & Clewell, A. Safety evaluation of a proprietary food-grade, dried fermentate Preparation of Saccharomyces cerevisiae. Int. J. Toxicol. 31, 34–45 (2012).
-
Sheshmani, S., Mardali, M., Shokrollahzadeh, S., Bide, Y. & Tarlani, R. Synthesis, optical, and photocatalytic properties of cellulose-derived carbon quantum Dots. Sci. Rep. 15, 19027 (2025).
-
Liang, S., Wang, M., Gao, W. & Zhao, X. Effects of elemental doping, acid treatment, and passivation on the fluorescence intensity and emission behavior of yellow fluorescence carbon Dots. Opt. Mater. 128, 112471 (2022).
-
Chandra, S., Laha, D., Pramanik, A., Ray Chowdhuri, A., Karmakar, P., & Sahu, S. K. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon Dots for the detection of Fe3 + ions in cancer cells. Luminescence 31, 81–87 (2016).
-
Ding, H., Li, X. H., Chen, X. B., Wei, J. S., Li, X. B., & Xiong, H. M. Surface States of carbon Dots and their influences on luminescence. Journal Appl. Physics. 127, 231101 (2020).
-
Li, X., Zhang, S., Kulinich, S. A., Liu, Y. & Zeng, H. Engineering surface States of carbon Dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2 + detection. Sci. Rep. 4, 4976 (2014).
-
Rahmandoust, M., Sharifikolouei, E., Lassnig, A. & Zoghi, S. Study of the durability and sustainability of fluorescent nanosensors based on cellulose nanocomposites incorporated with various carbon Dots. Cellulose 30, 1031–1044 (2023).
-
Taheri, Z., Mirjalili, M. H., Shahsavarani, H., Ghassempour, A. & Rahmandoust, M. Single-step synthesized carbon quantum Dots from centella Asiatica hairy roots: Photoluminescent, biocompatibility, antibacterial and anticancer activity. Ind. Crops Prod. 229, 120999 (2025).
-
Kumar, P., Dua, S., Kaur, R., Kumar, M. & Bhatt, G. A review on advancements in carbon quantum Dots and their application in photovoltaics. RSC Adv. 12, 4714–4759 (2022).
-
Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta. 186, 583 (2019).
-
Siddique, A. B., Pramanick, A. K., Chatterjee, S. & Ray, M. Amorphous carbon Dots and their remarkable ability to detect 2, 4, 6-trinitrophenol. Sci. Rep. 8, 9770 (2018).
-
Thangaraj, B., Solomon, P. R., Chuangchote, S., Wongyao, N. & Surareungchai, W. Biomass-derived carbon quantum dots–A review. Part 1: Preparation and characterization. ChemBioEng Rev. 8, 265–301 (2021).
-
Selvaraju, N., Ganesh, P. S., Palrasu, V., Venugopal, G. & Mariappan, V. Evaluation of antimicrobial and antibiofilm activity of citrus medica fruit juice based carbon Dots against Pseudomonas aeruginosa. ACS Omega7, 36227–36234 (2022).
-
Chai, S., Zhou, L., Pei, S., Zhu, Z. & Chen, B. P-doped carbon quantum Dots with antibacterial activity. Micromachines 12, 1116 (2021).
-
Chai, S., Zhou, L., Chi, Y., Chen, L., Pei, S., & Chen, B. Enhanced antibacterial activity with increasing P doping ratio in CQDs. RSC Adv. 12, 27709–27715 (2022).
-
Li, P., Sun, L., Xue, S., Qu, D., An, L., Wang, X., & Sun, Z. Recent advances of carbon dots as new antimicrobial agents. SmartMat. 3, 226–248 (2022).
-
Sayyad, U. S., Waghmare, S. & Mondal, S. A proton-coupled electron transfer process from functionalized carbon Dots to molecular substrates: the role of pH. Nanoscale 16, 18468–18476 (2024).
-
Syamantak, K., Navneet, C. V., Prashant, G., Sanjhal, J., Souvik, G., & Nandi, C. K. Mechanistic insight into the carbon dots: protonation induced photoluminescence. J Mater. Sci. Eng. 7, 1000448 (2018).
-
Šafranko, S., Stanković, A., Hajra, S., Kim, H.J., Strelec, I., Dutour-Sikirić, M., Weber, I., Bosnar, M.H., Grbčić, P., Pavelić, S.K. & Széchenyi, A. Preparation of multifunctional N-doped carbon quantum Dots from citrus Clementina peel: investigating targeted Pharmacological activities and the potential application for Fe3 + sensing. Pharmaceuticals 14, 857 (2021).
-
Olia, F., Fiori, F. & Innocenzi, P. Antioxidant-oxidant dual action of carbon Dots obtained through thermal processing of citric acid. Next Mater. 8, 100756 (2025).
-
Bao, W., Ma, H., Wang, N. & He, Z. pH-sensitive carbon quantum dots – doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym. Adv. Technol. 30, 2664–2673 (2019).
-
Ahamed, A., Samaranayake, P., Silva, V. D., Kooh, M. R. R., Wickramage, N., Rajapaksha, I. G., & Thotagamuge, R. Unveiling the pH-Responsive mechanisms of the carbon Dot–Proximicin-A peptide conjugate for targeted cancer therapy using density functional theory. Molecules 30, 896 (2025).
-
Pleskova, S., Pudovkina, E., Mikheeva, E. & Gorshkova, E. Interactions of quantum Dots with donor blood erythrocytes in vitro. Bull. Exp. Biol. Med. 156, 384–388 (2014).
-
Wang, J., Zheng, X. & Zhang, H. Exploring the conformational changes in fibrinogen by forming protein Corona with CdTe quantum Dots and the related cytotoxicity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 220, 117143 (2019).
-
Kotańska, M., Wojtaszek, K., Kubacka, M., Bednarski, M., Nicosia, N., & Wojnicki, M. The influence of caramel carbon quantum Dots and caramel on platelet aggregation, protein glycation and lipid peroxidation. Antioxidants 13, 13 (2023).
-
Ozdemir, N., Tan, G., Tevlek, A., Arslan, G., Zengin, G., & Sargin, I. Dead cell discrimination with red emissive carbon quantum Dots from the medicinal and edible herb echinophora tenuifolia. J Fluoresc. 1–18 (2025).
-
Hashempour, S., Ghanbarzadeh, S., Maibach, H. I., Ghorbani, M. & Hamishehkar, H. Skin toxicity of topically applied nanoparticles. Therapeut. Del. 10, 383–396 (2019).
