References
-
Lee, I.-M., Davis, R. E. & Gundersen-Rindal, D. E. Phytoplasma: Phytopathogenic mollicutes. Annu. Rev. Microbiol. 54, 221–255 (2000).
-
Nougadère, A. et al. Grapevine flavescence dorée phytoplasma Pest Report to support the ranking of EU candidate priority pests. EFSA Support. Public. 22, 9567E (2025).
-
Malembic-Maher, S. et al. When a Palearctic bacterium meets a Nearctic insect vector: Genetic and ecological insights into the emergence of the grapevine Flavescence dorée epidemics in Europe. PLoS Pathog. 16, e1007967 (2020).
-
Caudwell, A., Kuszala, C., Larrue, J. & Bachelier, J. Transmission de la Flavescence dorée de la fève à la fève par des cicadelles des genres Euscelis et Euscelidius. Ann. Phytopathol. 1572, 181–189 (1972).
-
Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).
-
Gupta, A. & Nair, S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).
-
Cooper, W. R. et al. Bacterial endosymbionts identified from leafhopper (Hemiptera: Cicadellidae) vectors of phytoplasmas. Environ. Entomol. 52, 243–253 (2023).
-
Wilkinson, T. L. & Ishikawa, H. On the functional significance of symbiotic microorganisms in the Homoptera: A comparative study of Acyrthosiphon pisum and Nilaparvata lugens. Physiol. Entomol. 26, 86–93 (2001).
-
Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).
-
Kikuchi, Y. Endosymbiotic bacteria in insects: Their diversity and culturability. Microbes Environ. 24, 195–204 (2009).
-
Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).
-
Martinson, V. G. et al. Multiple origins of obligate nematode and insect symbionts by a clade of bacteria closely related to plant pathogens. Proc. Natl. Acad. Sci. 117, 31979–31986 (2020).
-
Marasco, R. et al. Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus (Hemiptera: Cicadellidae). Int J Syst Evol Microbiol 74, 006544 (2024).
-
Abbà, S. et al. Genome sequence, prevalence and quantification of the first iflavirus identified in a phytoplasma insect vector. Arch. Virol. 162, 799 (2017).
-
Ottati, S. et al. Biological characterization of Euscelidius variegatus iflavirus 1. J. Invertebr. Pathol. 173, 107370 (2020).
-
Galetto, L. et al. Two phytoplasmas elicit different responses in the insect vector Euscelidius variegatus Kirschbaum. Infect. Immun. 86, 10–128 (2018).
-
Weil, T. et al. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. Insect Biochem. Mol. Biol. 127, 103474 (2020).
-
Vijay, S., Rawat, M. & Sharma, A. Mass spectrometry based proteomic analysis of salivary glands of urban malaria vector Anopheles stephensi. Biomed. Res. Int. 2014, 1–12 (2014).
-
Ramos, L. F. C. et al. Interspecies isobaric labeling-based quantitative proteomics reveals protein changes in the ovary of Aedes aegypti coinfected With ZIKV and Wolbachia. Front. Cell Infect. Microbiol. 12, 900608 (2022).
-
Liu, B., Qin, F., Liu, W. & Wang, X. Differential proteomics profiling of the ova between healthy and Rice stripe virus-infected female insects of Laodelphax striatellus. Sci. Rep. 6, 27216 (2016).
-
Zhao, J. et al. Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol. J. 16, 32 (2019).
-
Badillo-Vargas, I. E. et al. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato Spotted Wilt Virus Infection. J. Virol. 86, 8793–8809 (2012).
-
Tamborindeguy, C. et al. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus. PLoS ONE 8, e71620 (2013).
-
Kruse, A. et al. Combining ’omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS ONE 12, e0179531 (2017).
-
Zhao, J. et al. Data-independent acquisition boosts quantitative metaproteomics for deep characterization of gut microbiota. NPJ. Biofilms. Microbiomes 9, 4 (2023).
-
Watanabe, K. & Sato, M. Gut colonization by an ice nucleation active bacterium, Erwinia(Pantoea)ananasReduces the cold hardiness of mulberry pyralid larvae. Cryobiology 38, 281–289 (1999).
-
Gitaitis, R. D., Walcott, R. R., Wells, M. L., Perez, J. C. D. & Sanders, F. H. Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips Frankliniella fusca. Plant Dis. 87, 675–678 (2003).
-
Krawczyk, K., Foryś, J., Nakonieczny, M., Tarnawska, M. & Bereś, P. K. Transmission of Pantoea ananatis, the causal agent of leaf spot disease of maize (Zea mays), by western corn rootworm (Diabrotica virgifera virgifera LeConte). Crop Prot. 141, 105431 (2021).
-
Bing, X.-L. et al. Characterization of Pantoea ananatis from rice planthoppers reveals a clade of rice-associated P. ananatis undergoing genome reduction. Microb. Genom. 8, 000907 (2022).
-
Blakeley-Ruiz, J. A. & Kleiner, M. Considerations for constructing a protein sequence database for metaproteomics. Comput. Struct. Biotechnol. J. 20, 937–952 (2022).
-
Vallino, M. et al. Bacteriophage-host association in the phytoplasma insect vector Euscelidius variegatus. Pathogens 10, 612 (2021).
-
Vasquez, Y. M., Li, Z., Xue, A. Z. & Bennett, G. M. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol. Ecol. Resour. 24, 13919 (2024).
-
Kwak, Y., Argandona, J. A., Degnan, P. H. & Hansen, A. K. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol. Ecol. Resour. 23, 233–252 (2023).
-
Li, Z. et al. The genomic basis of evolutionary novelties in a leafhopper. Mol. Biol. Evol. 39, msac184 (2022).
-
Heck, M. & Neely, B. A. Proteomics in non-model organisms: A new analytical frontier. J. Proteome Res. 19, 3595–3606 (2020).
-
Armengaud, J. et al. Non-model organisms, a species endangered by proteogenomics. J. Proteomics 105, 5–18 (2014).
-
Miura, N., Tabata, T., Ishihama, Y. & Okuda, S. Phylogenetic tree-based amino acid sequence generation for proteomics data analysis of unknown species. Comput. Struct. Biotechnol. J. 27, 2313–2322 (2025).
-
Canuto, F. et al. A knockdown gene approach identifies an insect vector membrane protein with leucin-rich repeats as one of the receptors for the VmpA adhesin of flavescence dorée phytoplasma. Front. Cell Infect. Microbiol. 13, 1289100 (2023).
-
Trivellone, V. et al. Evidence suggesting interactions between immunodominant membrane protein Imp of Flavescence dorée phytoplasma and protein extracts from distantly related insect species. J. Appl. Microbiol. 127, 1801–1813 (2019).
-
Galetto, L. et al. Natterin-like and legumain insect gut proteins promote the multiplication of a vector-borne bacterial plant pathogen. Microbiol. Res. 291, 127984 (2025).
-
Bressan, A., Girolami, V. & Boudon-Padieu, E. Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomol Exp Appl 115, 283–290 (2005).
-
Du, X. & Thiem, S. M. Responses of insect cells to baculovirus infection: Protein synthesis shutdown and apoptosis. J. Virol. 71, 7866–7872 (1997).
-
Galetto, L. et al. Silencing of ATP synthase β reduces phytoplasma multiplication in a leafhopper vector. J. Insect. Physiol. 128, 104176 (2021).
-
Galetto, L. et al. The major antigenic membrane protein of “Candidatus phytoplasma asteris” selectively interacts with ATP synthase and actin of leafhopper vectors. PLoS ONE 6, e22571 (2011).
-
Rossi, M. et al. Application of laser microdissection to study phytoplasma site-specific gene expression in the model plant Arabidopsis thaliana. Microbiol. Res. 217, 60–68 (2018).
-
Inaba, J., Kim, B. M., Zhao, Y., Jansen, A. M. & Wei, W. The endoplasmic reticulum is a key battleground between phytoplasma aggression and host plant defense. Cells 12, 2110 (2023).
-
Suzuki, S. et al. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc. Natl. Acad. Sci. 103, 4252–4257 (2006).
-
Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS ONE 10, e0129373 (2015).
-
Roosien, B. K. et al. Conditional vector preference aids the spread of plant pathogens: Results from a model. Environ. Entomol. 42, 1299–1308 (2013).
-
Prasad, S. S. et al. Correction: Prasad et al. Patterns of variation in the usage of fatty acid chains among classes of ester and ether neutral lipids and phospholipids in the Queensland Fruit Fly. Insects 15, 538 (2024).
-
Burmester, T. Evolution and function of the insect hexamerins. Eur. J. Entomol. 96, 213–215 (1999).
-
Eliautout, R. et al. Immune response and survival of Circulifer haematoceps to Spiroplasma citri infection requires expression of the gene hexamerin. Dev. Comp. Immunol. 54, 7–19 (2016).
-
Mao, M., Yang, X. & Bennett, G. M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl. Acad. Sci. 115, E11691 (2018).
-
Purcell, A. H. & Suslow, K. G. Pathogenicity and effects on transmission of a mycoplasmalike organism of a transovarially infective bacterium on the leafhopper Euscelidius variegatus (Homoptera: Cicadellidae). J. Invertebr. Pathol. 50, 285–290 (1987).
-
Kang, S., Shields, A. R., Jupatanakul, N. & Dimopoulos, G. Suppressing Dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl. Trop. Dis. 8, e3084 (2014).
-
Dong, S., Kang, S. & Dimopoulos, G. Identification of anti-flaviviral drugs with mosquitocidal and anti-Zika virus activity in Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007681 (2019).
-
Rossi, M. et al. Genetic diversity of flavescence dorée phytoplasmas at the vineyard scale. Appl. Environ. Microbiol. 85, e03123 (2019).
-
Rossi, M. et al. Competition among flavescence dorée phytoplasma strains in the experimental insect vector Euscelidius variegatus. Insects 14, 575 (2023).
-
Marzachì, C., Veratti, F. & Bosco, D. Direct PCR detection of phytoplasmas in experimentally infected insects. Ann. Appl. Biol. 133, 45–54 (1998).
-
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).
-
Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).
-
Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34, i142–i150 (2018).
-
Cantarel, B. L. et al. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).
-
Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
-
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423 (2019).
