Lactococcus lactis subsp. lactis as a biocontrol agent against phytopathogens causing rice bacterial leaf blight

lactococcus-lactis-subsp.-lactis-as-a-biocontrol-agent-against-phytopathogens-causing-rice-bacterial-leaf-blight
Lactococcus lactis subsp. lactis as a biocontrol agent against phytopathogens causing rice bacterial leaf blight

References

  1. Harun, R., Suhaimee, S., Zaffrie, M., Amin, M. & Sulaiman, N. H. Benchmarking and prospecting of technological practices in rice production (Penanda aras dan prospek amalan teknologi dalam pengeluaran padi). Econ. Technol. Manag. Rev. 10, 77–88 (2015).

    Google Scholar 

  2. Najim, M. M. M., Lee, T. S., Haque, M. A. & Esham, M. Sustainability of rice production: A Malaysian perspective. J. Agric. Sci. 3(1), 1 (2007).

    Google Scholar 

  3. Mohd Din, B. N., Syd Ali, N., Tan, G. H. & Yusop, M. R. Current status of bacterial leaf blight in Malaysian rice plants. J. Curr. Opin. Crop. Sci. 4(1), 1–12 (2023).

    Google Scholar 

  4. Sabri, S., Ab Wahab, M. Z., Sapak, Z. & Mohd Anuar, I. S. A review of bacterial diseases of rice and its management in Malaysia. Food Res. 7, 120–133 (2023).

    Google Scholar 

  5. Swings, J. et al. Reclassification of the causal agents of bacterial blight. Int. J. Syst. Bacteriol. 40(3), 309–311 (1990).

    Google Scholar 

  6. Dorairaj, D. & Govender, N. T. Rice and paddy industry in Malaysia: governance and policies, research trends, technology adoption and resilience. Front Sustain Food Syst. 7, 1–22 (2023).

    Google Scholar 

  7. Kumar, L. V. & Balabaskar, P. In vitro antibacterial activity of plant extracts against Xanthomonas oryzae pv. oryzae causing bacterial leaf blight in rice. Int. J. Plant Protect 6(1), 2013 (2013).

    Google Scholar 

  8. Doni, F., Suhaimi, N. S. M., Mohamed, Z., Ishak, N. & Mispan, M. S. Pantoea: A newly identified causative agent for leaf blight disease in rice. J. Plant Dis. Prot. 126(6), 491–494. https://doi.org/10.1007/s41348-019-00244-6 (2019).

    Google Scholar 

  9. Visser, R., Holzapfel, W. H., Bezuidenhout, J. J. & Kotze, J. M. Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl. Environ. Microbiol. 52(3), 552–555 (1986).

    Google Scholar 

  10. Emmert, E. A. B. & Handelsman, J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171(1), 1–9 (1999).

    Google Scholar 

  11. Goldstein, E. J. C., Tyrrell, K. L. & Citron, D. M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 60(Suppl 2), S98-107 (2015).

    Google Scholar 

  12. Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8(5), 1402–1419 (2011).

    Google Scholar 

  13. Mateo, E. M., Tarazona, A., Aznar, R. & Mateo, F. Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp and their main mycotoxins. Int. J. Food Microbiol. 387, 110054. https://doi.org/10.1016/j.ijfoodmicro.2022.110054 (2023).

    Google Scholar 

  14. Ibrahim, S. A. et al. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods. 10(12), 1–13 (2021).

    Google Scholar 

  15. Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M. & Smith, D. L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 111, 1–9 (2017).

    Google Scholar 

  16. Azizi, M. M. F. et al. First report of Pantoea ananatis causing leaf blight disease of rice in Peninsular Malaysia. Plant Dis. 103(8), 2122 (2019).

    Google Scholar 

  17. Azman, N., Sijam, K., Hata, E., Othman, R. & Saud, H. Screening of bacteria as antagonist against Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of paddy and as plant growth promoter. J. Exp. Agric. Int. 16(4), 1–15 (2017).

    Google Scholar 

  18. Henning, C. et al. Isolation and taxonomic identity of bacteriocin-producing lactic acid bacteria from retail foods and animal sources. Microorganisms. 3(1), 80–93 (2015).

    Google Scholar 

  19. Dopazo, V. et al. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. J. Sci. Food Agric. 102(3), 898–907 (2022).

    Google Scholar 

  20. Saravanakumari, P. & Mani, K. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour. Technol. 101(22), 8851–8854. https://doi.org/10.1016/j.biortech.2010.06.104 (2010).

    Google Scholar 

  21. Harris, L. J., Daeschel, M. A., Stiles, M. E. & Klaenhammer, T. R. Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Prot. 52(6), 384–387. https://doi.org/10.4315/0362-028X-52.6.384 (1989).

    Google Scholar 

  22. Alshareef, F. Protocol to evaluate antibacterial activity MIC, FIC and time kill method. Acta Sci. Microbiol. 4(5), 2–6 (2021).

    Google Scholar 

  23. Pettitt, T. R., Wainwright, M. F., Wakeham, A. J. & White, J. G. A simple detached leaf assay provides rapid and inexpensive determination of pathogenicity of Pythium isolates to “all year round” (AYR) chrysanthemum roots. Plant Pathol. 60(5), 946–956 (2011).

    Google Scholar 

  24. Kaya, I., Yigit, N. & Benli, M. Antimicrobial activity of various extracts of Ocimum basilicum l. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. African. J. Tradit. Complement Altern. Med. 5(4), 363 (2008).

    Google Scholar 

  25. Techaoei, S., Jarmkom, K., Dumrongphuttidecha, T. & Khobjai, W. Bioactive compound and chemical characterization of lactic acid bacteria from fermented food as bio-preservative agents to control food-borne pathogens. J. Pharm. Pharmacogn. Res. 11(6), 1044–1055 (2023).

    Google Scholar 

  26. Diale, M. O., Kayitesi, E. & Serepa-Dlamini, M. H. Genome in silico and in vitro analysis of the probiotic properties of a bacterial endophyte, bacillus paranthracis strain MHSD3. Front. Genet. 12, 1–19 (2021).

    Google Scholar 

  27. Ser, Z., Liu, X., Tang, N. N. & Locasale, J. W. Extraction parameters for metabolomics from cultured cells. Anal. Biochem. 475, 22–28. https://doi.org/10.1016/j.ab.2015.01.003 (2015).

    Google Scholar 

  28. Huang, Q. & Luo, P. Effects of leaf cutting on fusarium head blight disease development, photosynthesis parameters and yield of wheat under f Graminearum inoculation condition. Agriculture 11(11), 1065 (2021).

    Google Scholar 

  29. Horsfall, J. G., Barratt, R. W. An improved grading system for measuring plant diseases (1946)

  30. Trias, R., Bañeras, L., Montesinos, E. & Badosa, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11(4), 231–236 (2008).

    Google Scholar 

  31. Emerenini, E. In vitro studies on antimicrobial activities of lactic acid bacteria isolated from fresh vegetables for biocontrol of tomato pathogens. Br. Microbiol. Res. J. 4(3), 351–359 (2014).

    Google Scholar 

  32. Sarkono, S., Faturrahman, F., Sofyan, Y. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina) as a potential candidate of probiotic. Nusant Biosci. 2(1) (1970).

  33. Maalaoui, A., Trimeche, A., Marnet, P. G. & Demarigny, Y. Use of Lactococcus lactis Subsp. Lactis strains to inhibit the development of pathogens. Food Nutr. Sci. 11(02), 98–112 (2020).

    Google Scholar 

  34. Tenea, G. N., Hurtado, P. & Ortega, C. Inhibitory effect of substances produced by native lactococcus lactis strains of tropical fruits towards food pathogens. Prev. Nutr. Food Sci. 23(3), 260–268 (2018).

    Google Scholar 

  35. Stice, S. P. et al. Thiosulfinate tolerance is a virulence strategy of an atypical bacterial pathogen of onion. Curr. Biol. 30(16), 3130–3140. https://doi.org/10.1016/j.cub.2020.05.092 (2020).

    Google Scholar 

  36. McDougall, L. A., Holzapfel, W. H., Schillinger, U., Feely, D. E. & Rupnow, J. H. Scanning electron microscopy of target cells and molecular weight determination of a bacteriocin produced by Lactococcus lactis D53. Int. J. Food Microbiol. 24(1–2), 295–308 (1994).

    Google Scholar 

  37. Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F. & Drider, D. Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins. Microorganisms. 9(10), 2107 (2021).

    Google Scholar 

  38. Rodriguez, C., Ibáñez, R., Rollins-Smith, L. A., Gutiérrez, M. & Durant-Archibold, A. A. Antimicrobial secretions of toads (Anura, bufonidae): Bioactive extracts and isolated compounds against human pathogens. Antibiotics. 9(12), 1–15 (2020).

    Google Scholar 

  39. Adam, D. Overview of the clinical features of cefixime. Chemotherapy 44(suppl 1), 1–5 (1998).

    Google Scholar 

  40. Ramic, A. et al. Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning. Antibiotics. 10(6), 659 (2021).

    Google Scholar 

  41. Yadav, S. et al. 4-[1-(Substituted aryl/alkyl carbonyl)-benzoimidazol-2-yl]-benzenesulfonic acids: Synthesis, antimicrobial activity, QSAR studies, and antiviral evaluation. Eur. J. Med. Chem. 45(12), 5985–5997. https://doi.org/10.1016/j.ejmech.2010.09.065 (2010).

    Google Scholar 

  42. Le, P. N. T. & Desbois, A. P. Antibacterial effect of eicosapentaenoic acid against Bacillus cereus and Staphylococcus aureus: Killing kinetics, selection for resistance, and potential cellular target. Mar. Drugs. 15(11), 334 (2017).

    Google Scholar 

  43. Okhale, S. E., Amupitan, J. O., Ayo, R. G., Oladosu, P. O. & Okogun, J. I. Synthesis and antibacterial activity of 7-deacetoxy-7-hydroxygedunin. African. J. Pure Appl. Chem. 7(4), 157–163 (2013).

    Google Scholar 

  44. Bruning, A. et al. New prospects for nelfinavir in non-HIV-related diseases. Curr. Mol. Pharmacol. 3(2), 91–97 (2010).

    Google Scholar 

  45. Netilmicin sulfate. Drugs Today. 17(8):322–8 (1981).

  46. Juven, B., Henis, Y., Jacoby, B. Studies on the mechanism of the antimicrobial action of oleuropein. J. Appl. Bacteriol. (1972)

  47. Kneifel, H., Konig, W. A., Loeffler, W. & Müller, R. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch. Microbiol. 113(1–2), 121–130 (1977).

    Google Scholar 

  48. Navrátilová, A. et al. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. Pharm Biol. 54(8), 1398–1407 (2016).

    Google Scholar 

  49. Triggle, D. J., Mitchell, J. M. & Filler, R. The pharmacology of physostigmine. CNS Drug Rev. 4(2), 87–136 (1998).

    Google Scholar 

  50. Makdoumi, K., Bäckman, A., Mortensen, J. & Crafoord, S. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefe’s Arch. Clin. Exp. Ophthalmol. 248(2), 207–212 (2010).

    Google Scholar 

  51. Lee, S. U., Sung, M. H., Ryu, H. W. & Lee, J. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine 77, 168 (2016).

    Google Scholar 

  52. Zhao, G. et al. Alpinetin: A review of its pharmacology and pharmacokinetics. Front. Pharmacol. 13, 1–23 (2022).

    Google Scholar 

  53. Seipke, R. F. & Hutchings, M. I. The regulation and biosynthesis of antimycins. Beilstein J. Org. Chem. 9, 2556–2563 (2013).

    Google Scholar 

  54. Nayaka, H. B., Londonkar, R. L., Umesh, M. K. & Tukappa, A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 1–8 (2014).

    Google Scholar 

  55. Marinescu, M. Synthesis of antimicrobial benzimidazole–pyrazole compounds and their biological activities. Antibiotics. 10(8), 1–29 (2021).

    Google Scholar 

  56. Dziedzic, A., Wojtyczka, R. D. W. & Kubina, R. Inhibition of oral streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds. Molecules 20(8), 13705–13724 (2015).

    Google Scholar 

  57. Visintini Jaime, M. F., Campos, R. H., Martino, V. S., Cavallaro, L. V., Muschietti, L. V. Antipoliovirus activity of the organic extract of Eupatorium buniifolium: Isolation of euparin as an active compound. Evidence-based Complement Altern. Med. 2013 (2013).

  58. Baker, B. P., Grant, J. A. Lauryl Sulfate Profile. 1–5 (1813).

  59. Yan, Z.-K. Antimicrobial tests of icariin. Agric. Food Sci. (2005)

  60. Asadi, A. et al. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J. Glob. Antimicrob Resist. 22, 161–174. https://doi.org/10.1016/j.jgar.2020.01.022 (2020).

    Google Scholar 

  61. Fregnan, A. M. et al. Synthesis of piplartine analogs and preliminary findings on structure–antimicrobial activity relationship. Med. Chem. Res. 26(3), 603–614 (2017).

    Google Scholar 

  62. Fialová, S. B. et al. Derivatization of rosmarinic acid enhances its in vitro antitumor, antimicrobial and antiprotozoal properties. Molecules 24(6), 1078 (2019).

    Google Scholar 

  63. Gwiazdowski, R., Kubiak, K., Juś, K., Marchwińska, K. & Gwiazdowska, D. The biocontrol of plant pathogenic fungi by selected lactic acid bacteria: from laboratory to field study. Agriculture 14(1), 61 (2024).

    Google Scholar 

Download references