References
-
Bhangu, S. K. & Ashokkumar, M. Theory of sonochemistry. In Sonochemistry. Topics in Current Chemistry Collections (eds Colmenares, J. & Chatel, G.) 1–28 (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-54271-3_1.
-
Gallo, M., Ferrara, L. & Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 7(10), 164 (2018).
-
Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D. Y. M. M. & Youssef, M. M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48(2), 410–427 (2012).
-
Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M. & Garcia-Galicia, I. A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 55, 369–382 (2019).
-
Caraveo, O., Alarcon-Rojo, A. D., Renteria, A., Santellano, E. & Paniwnyk, L. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. J. Sci. Food Agric. 95(12), 2487–2493 (2015).
-
Huang, R. et al. Research advance of application of ultrasonic treatment in meat processing. Shipin Gongye Keji 44(20), 431–439 (2023).
-
Lee, E. Y. et al. Effect of novel high-intensity ultrasound technique on physio-chemical, sensory attributes, and microstructure of bovine semitendinosus muscle. Food Sci. Animal Resour. 43(1), 85–100 (2023).
-
Turantaş, F., Kılıç, G. B. & Kılıç, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 198, 59–69 (2015).
-
Wang, L. et al. Changes in collagen properties and cathepsin activity of beef M. semitendinosus by the application of ultrasound during post-mortem aging. Meat Sci. 185, 108718 (2022).
-
Li, K., Kang, Z. L., Zhao, Y. Y., Xu, X. L. & Zhou, G. H. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol. 7, 3466–3477 (2014).
-
Zou, Y., Zhang, W., Kang, D. & Zhou, G. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. Int. J. Food Sci. Technol. 53(3), 828–836 (2018).
-
Barekat, S. & Soltanizadeh, N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innov. Food Sci. Emerg. Technol. 39, 223–229 (2017).
-
Kang, D. C. et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason. Sonochem. 33, 47–53 (2016).
-
Peña-González, E. M. et al. Quality and sensory profile of ultrasound-treated beef. Ital. J. Food Sci. 29(3), 463–475 (2017).
-
Stadnik, J. & Dolatowski, Z. J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 233, 553–559 (2011).
-
Çimen, N., Unal, K. & Alp, H. Effects of ultrasound-assisted marination on spent hen meats: Microstructure, textural and technological properties. Food Biosci. 61, 104563 (2024).
-
OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030 (OECD Publishing, Paris, 2021). https://doi.org/10.1787/19428846-en.
-
Bureš, D., Bartoň, L., Kotrba, R. & Hakl, J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 95(11), 2299–2306 (2015).
-
Mason, F., Fotschki, B., Di Rosso, A. & Korzekwa, A. Influence of farming conditions on the rumen of red deer (Cervus elaphus). Animals 9(9), 601 (2019).
-
GUS 2024. https://bdl.stat.gov.pl/bdl/dane/podgrup/tablica. Available 20 Feb 2025.
-
Ankudo-Jankowska, A. & Starosta-Grala, M. Game meat procurement market in Poland in 2009–2021. Acta Sci. Pol., Silvarum Colendarum Ratio et Industria Lignaria 21(1), 13–20 (2022).
-
King, D. A. et al. American Meat Science Association guidelines for meat color measurement. Meat Muscle Biol. 6(4), 1–81 (2023).
-
Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256–1262 (1979).
-
Bradford, M. M. A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal. Biochem. 72, 248–254 (1976).
-
Pikul, J., Leszczynski, D. E. & Kummerow, F. A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 37(5), 1309–1313 (1989).
-
Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9–10), 1231–1237 (1999).
-
Wu, H. C., Chen, H. M. & Shiau, C. Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9–10), 949–957 (2003).
-
Mora, L., Escudero, E., Fraser, P. D., Aristoy, M. C. & Toldrá, F. Proteomic identification of antioxidant peptides from 400 to 250 W0 Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Res. Int. 56, 68–76 (2014).
-
Decker, E. A. & Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38(3), 674–677 (1990).
-
Jayasooriya, S. D., Torley, P. J., D’arcy, B. R. & Bhandari, B. R. Effect of high-power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci. 75(4), 628–639 (2007).
-
Carrillo-Lopez, L. M., Cruz-Garibaldi, B. Y., Huerta-Jimenez, M., Garcia-Galicia, I. A. & Alarcon-Rojo, A. D. The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition. Molecules 27(2), 541 (2022).
-
Yasui, K. The reducing agents in sonochemical reactions without any additives. Molecules 28(10), 4198 (2023).
-
Krasulya, O. et al. Estimation of the stability of skeletal muscle myoglobin of chilled pork treated with brine activated by low-frequency high-intensity ultrasound. Ultrason. Sonochem. 71, 105363 (2021).
-
Chakanya, C., Arnaud, E., Muchenje, V. & Hoffman, L. C. Colour and oxidative stability of mince produced from fresh and frozen/thawed fallow deer (Dama dama) meat. Meat Sci. 126, 63–72 (2017).
-
Sikes, A. L., Mawson, R., Stark, J. & Warner, R. Quality properties of pre-and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrason. Sonochem. 21(6), 2138–2143 (2014).
-
Pohlman, F. W., Dikeman, M. E. & Kropf, D. H. Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Sci. 46(1), 89–100 (1997).
-
Ramanathan, R. & Mancini, R. A. Role of mitochondria in beef color: A review. Meat Muscle Biol. 2(1), 309–320 (2018).
-
Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 89(3), 259–279 (2011).
-
Delles, R. M. & Xiong, Y. L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere. Meat Sci. 97(2), 181–188 (2014).
