Improvement of colour and oxidative stability of red deer and beef meat under sonication treatment

improvement-of-colour-and-oxidative-stability-of-red-deer-and-beef-meat-under-sonication-treatment
Improvement of colour and oxidative stability of red deer and beef meat under sonication treatment

References

  1. Bhangu, S. K. & Ashokkumar, M. Theory of sonochemistry. In Sonochemistry. Topics in Current Chemistry Collections (eds Colmenares, J. & Chatel, G.) 1–28 (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-54271-3_1.

    Google Scholar 

  2. Gallo, M., Ferrara, L. & Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 7(10), 164 (2018).

    Google Scholar 

  3. Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D. Y. M. M. & Youssef, M. M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 48(2), 410–427 (2012).

    Google Scholar 

  4. Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M. & Garcia-Galicia, I. A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 55, 369–382 (2019).

    Google Scholar 

  5. Caraveo, O., Alarcon-Rojo, A. D., Renteria, A., Santellano, E. & Paniwnyk, L. Physicochemical and microbiological characteristics of beef treated with high-intensity ultrasound and stored at 4 °C. J. Sci. Food Agric. 95(12), 2487–2493 (2015).

    Google Scholar 

  6. Huang, R. et al. Research advance of application of ultrasonic treatment in meat processing. Shipin Gongye Keji 44(20), 431–439 (2023).

    Google Scholar 

  7. Lee, E. Y. et al. Effect of novel high-intensity ultrasound technique on physio-chemical, sensory attributes, and microstructure of bovine semitendinosus muscle. Food Sci. Animal Resour. 43(1), 85–100 (2023).

    Google Scholar 

  8. Turantaş, F., Kılıç, G. B. & Kılıç, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 198, 59–69 (2015).

    Google Scholar 

  9. Wang, L. et al. Changes in collagen properties and cathepsin activity of beef M. semitendinosus by the application of ultrasound during post-mortem aging. Meat Sci. 185, 108718 (2022).

    Google Scholar 

  10. Li, K., Kang, Z. L., Zhao, Y. Y., Xu, X. L. & Zhou, G. H. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat. Food Bioprocess Technol. 7, 3466–3477 (2014).

    Google Scholar 

  11. Zou, Y., Zhang, W., Kang, D. & Zhou, G. Improvement of tenderness and water holding capacity of spiced beef by the application of ultrasound during cooking. Int. J. Food Sci. Technol. 53(3), 828–836 (2018).

    Google Scholar 

  12. Barekat, S. & Soltanizadeh, N. Improvement of meat tenderness by simultaneous application of high-intensity ultrasonic radiation and papain treatment. Innov. Food Sci. Emerg. Technol. 39, 223–229 (2017).

    Google Scholar 

  13. Kang, D. C. et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing. Ultrason. Sonochem. 33, 47–53 (2016).

    Google Scholar 

  14. Peña-González, E. M. et al. Quality and sensory profile of ultrasound-treated beef. Ital. J. Food Sci. 29(3), 463–475 (2017).

  15. Stadnik, J. & Dolatowski, Z. J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 233, 553–559 (2011).

    Google Scholar 

  16. Çimen, N., Unal, K. & Alp, H. Effects of ultrasound-assisted marination on spent hen meats: Microstructure, textural and technological properties. Food Biosci. 61, 104563 (2024).

    Google Scholar 

  17. OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030 (OECD Publishing, Paris, 2021). https://doi.org/10.1787/19428846-en.

    Google Scholar 

  18. Bureš, D., Bartoň, L., Kotrba, R. & Hakl, J. Quality attributes and composition of meat from red deer (Cervus elaphus), fallow deer (Dama dama) and Aberdeen Angus and Holstein cattle (Bos taurus). J. Sci. Food Agric. 95(11), 2299–2306 (2015).

    Google Scholar 

  19. Mason, F., Fotschki, B., Di Rosso, A. & Korzekwa, A. Influence of farming conditions on the rumen of red deer (Cervus elaphus). Animals 9(9), 601 (2019).

    Google Scholar 

  20. GUS 2024. https://bdl.stat.gov.pl/bdl/dane/podgrup/tablica. Available 20 Feb 2025.

  21. Ankudo-Jankowska, A. & Starosta-Grala, M. Game meat procurement market in Poland in 2009–2021. Acta Sci. Pol., Silvarum Colendarum Ratio et Industria Lignaria 21(1), 13–20 (2022).

  22. King, D. A. et al. American Meat Science Association guidelines for meat color measurement. Meat Muscle Biol. 6(4), 1–81 (2023).

  23. Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256–1262 (1979).

    Google Scholar 

  24. Bradford, M. M. A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal. Biochem. 72, 248–254 (1976).

    Google Scholar 

  25. Pikul, J., Leszczynski, D. E. & Kummerow, F. A. Evaluation of three modified TBA methods for measuring lipid oxidation in chicken meat. J. Agric. Food Chem. 37(5), 1309–1313 (1989).

    Google Scholar 

  26. Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9–10), 1231–1237 (1999).

    Google Scholar 

  27. Wu, H. C., Chen, H. M. & Shiau, C. Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 36(9–10), 949–957 (2003).

    Google Scholar 

  28. Mora, L., Escudero, E., Fraser, P. D., Aristoy, M. C. & Toldrá, F. Proteomic identification of antioxidant peptides from 400 to 250 W0 Da generated in Spanish dry-cured ham contained in a size-exclusion chromatography fraction. Food Res. Int. 56, 68–76 (2014).

    Google Scholar 

  29. Decker, E. A. & Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 38(3), 674–677 (1990).

    Google Scholar 

  30. Jayasooriya, S. D., Torley, P. J., D’arcy, B. R. & Bhandari, B. R. Effect of high-power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci. 75(4), 628–639 (2007).

    Google Scholar 

  31. Carrillo-Lopez, L. M., Cruz-Garibaldi, B. Y., Huerta-Jimenez, M., Garcia-Galicia, I. A. & Alarcon-Rojo, A. D. The physicochemical, microbiological, and structural changes in beef are dependent on the ultrasound system, time, and one-side exposition. Molecules 27(2), 541 (2022).

    Google Scholar 

  32. Yasui, K. The reducing agents in sonochemical reactions without any additives. Molecules 28(10), 4198 (2023).

    Google Scholar 

  33. Krasulya, O. et al. Estimation of the stability of skeletal muscle myoglobin of chilled pork treated with brine activated by low-frequency high-intensity ultrasound. Ultrason. Sonochem. 71, 105363 (2021).

    Google Scholar 

  34. Chakanya, C., Arnaud, E., Muchenje, V. & Hoffman, L. C. Colour and oxidative stability of mince produced from fresh and frozen/thawed fallow deer (Dama dama) meat. Meat Sci. 126, 63–72 (2017).

    Google Scholar 

  35. Sikes, A. L., Mawson, R., Stark, J. & Warner, R. Quality properties of pre-and post-rigor beef muscle after interventions with high frequency ultrasound. Ultrason. Sonochem. 21(6), 2138–2143 (2014).

    Google Scholar 

  36. Pohlman, F. W., Dikeman, M. E. & Kropf, D. H. Effects of high intensity ultrasound treatment, storage time and cooking method on shear, sensory, instrumental color and cooking properties of packaged and unpackaged beef pectoralis muscle. Meat Sci. 46(1), 89–100 (1997).

    Google Scholar 

  37. Ramanathan, R. & Mancini, R. A. Role of mitochondria in beef color: A review. Meat Muscle Biol. 2(1), 309–320 (2018).

  38. Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 89(3), 259–279 (2011).

    Google Scholar 

  39. Delles, R. M. & Xiong, Y. L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere. Meat Sci. 97(2), 181–188 (2014).

    Google Scholar 

Download references