References
-
Räisänen, K. et al. Three clusters of carbapenemase-producing citrobacter freundii in Finland 2016-20. J. Antimicrob. Chemother. 76, 2697–2701 (2021).
-
Moussa, S. et al. Citrobacter freundii skin infection in an immunocompetent subject simulating varicella: A Treatment-Resistant case. Dermatol. Online J. 8, 1–3 (2023).
-
Hewitt, M. K., Klowak, J. A., Pernica, J. M. & Leung, J. Citrobacter Koseri meningitis and septicemia in a neonate with borderline fever at home. Cmaj 193 (41), E1592–E1594 (2021).
-
Céspedes, L. & Fonseca, Y. Antimicrobial susceptibility of citrobacter Koseri isolated on clinical samples of hospitalized patients. J. Microbiol. Exp. 10 (2), 54–57 (2022).
-
Forsythe, S. J., Abbott, S. L. & Pitout, J. Klebsiella, enterobacter, Citrobacter, cronobacter, serratia, plesiomonas, and other Enterobacteriaceae, in Manual of Clinical Microbiology (John Wiley & Sons, Ltd), 714–737 (2015).
-
Liu, L. et al. Antimicrobial resistance and cytotoxicity of citrobacter spp. In Maanshan Anhui Province, China. Front. Microbiol. 8, 1357 (2017).
-
Godoy, S. N. & Matushima, E. R. A survey of diseases in passeriform birds obtained from illegal wildlife trade in Sao Paulo city, Brazil. J. Avian Med. Surg. 24, 199–209 (2010).
-
Liu, H., Zhao, Z., Xue, Y., Ding, K. & Xue, Q. Fatal cases of citrobacter freundii septicemia and encephalitis in sheep. J. Vet. Diagn. Invest. 30 (2), 245–248 (2018).
-
Ibrahim, M., Bahout, A., Ayoub, M., El-Said, E. I. & Abd ElAal, S. F. Chemical and Microbiological evaluation of Raw Buffalo milk locally produced in Sharkia Governorate. Zagazig Vet. J. 47 (4), 352–363 (2019).
-
Ombarak, R. & Elbagory, A. R. Bacteriological quality and safety of Raw cow’s and buffalo’s milk sold in menoufia Governorate, Egypt. J. Curr. Vet. Res. 9 (1), 102–113 (2015).
-
Nossair, M. A., Khaled, K., Shabasy, E. & Samaha, I. A. Detection of some enteric pathogens in retailed meat. Alex J. Vet. Sci. https://doi.org/10.5455/ajvs.171536 (2015).
-
Abd El-Tawab, A. A., Selim, A. O. & Soliman, A. M. Phenotypic and genotypic characterization of some bacterial isolates (Escherichia coli, Klebsiella oxytoca) from chickens. Benha Vet. Med. J. 35 (2), 284–302 (2018).
-
Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D. & Kamal, M. A. Antibiotic resistance and extended spectrum betalactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 22 (1), 90–101 (2015).
-
Ejaz, H. et al. M. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE. 16 (1), e0245126 (2021).
-
Mestrovic, T. et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public. Health. 7 (11), e897–e913 (2022).
-
Liu, L. et al. Genetic Diversity, multidrug Resistance, and virulence of citrobacter freundii from diarrheal patients and healthy individuals. Front. Cell. Infect. Microbiol. 8, 233 (2018).
-
Huang, J. et al. Emergence of Tigecycline and Carbapenem-Resistant citrobacter freundii Co-Carrying tmexCD1- toprJ1, blaKPC-2, and blaNDM-1 from a sepsis patient. Infect. Drug Resist. 16, 5855–5868 (2023).
-
Dolejska, M. et al. Plasmids carrying Bla CTX-M-1 and Qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 66 (4), 757–764 (2011).
-
Abrar, S. et al. Distribution of Bla (CTX—M), Bla (TEM), Bla (SHV) and Bla (OXA) genes in Extended-spectrum-β-lactamase-producing clinical isolates: A threeyear multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control. 8, 80 (2019).
-
Rao, M. J., Harle, S. & Padmavathy, M. Prevalence of extended spectrum beta-lactamases and amp-c beta-lactamases in clinical isolates of gram-negative bacilli at a tertiary care hospital. JEMDS 7 (39), 5072–5077 (2018).
-
Bonnet, R. et al. Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240! Gly. Antimicrob. Agents Chemother. 45 (8), 2269–2275 (2001).
-
Choi, S. H. et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC β-lactamase: implications for antibiotic use. Antimicrob. Agents Chemother. 52, 995–1000 (2008).
-
Pepperell, C., Kus, J. V., Gardam, M. A., Humar, A. & Burrows, L. L. Low virulence citrobacter species encode resistance to multiple antimicrobials. Antimicrob. Agents Chemother. 46 (11), 3555–3560 (2002).
-
Babiker, A. et al. Tyne, D. Clinical and genomic epidemiology of Carbapenem-Nonsusceptible Citrobacter spp. At a tertiary health care center over 2 decades. J. Clin. Microbiol. 58 (9), e00275–e00220 (2020). Van.
-
Yao, Y. et al. Carbapenem-Resistant Citrobacter spp. As an emerging concern in the Hospital-Setting: results from a Genome-Based regional surveillance study. Front. Cell. Infect. Microbiol. 11, 744431 (2021).
-
Bush, K. & Bradford, P. A. Epidemiology of β-Lactamase-Producing pathogens. Clin. Microbiol. Rev. 33 (2), e00047–e00019 (2020).
-
Hidayatullah, A. R. et al. D. A review of the opportunistic pathogen citrobacter freundii in piglets post weaning: public health importance. Sys Rev. Pharm. 11, 767–773 (2020).
-
Girlich, D., Bonnin, R. A., Dortet, L. & Naas, T. Genetics of acquired antibiotic resistance genes in proteus spp. Front. Microbiol. 11, 256 (2020).
-
World Health Organization. ; Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2019.Critically Important Antimicrobials for Human Medicine. 6th Revision (2018).
-
Hu, Y. Y. et al. X. Colistin resistance gene mcr-1 in gut flora of children. Int. J. Antimicrob. Agents. 50 (4), 593–597 (2017).
-
Ju, X. et al. Epidemiology and molecular characteristics of mcr-9 in citrobacter spp. From healthy individuals and patients in China. Microbiol. Spectr. 10, e0134622 (2022).
-
Faccone, D. et al. Characterization of a multidrug resistant citrobacter amalonaticus clinical isolate harboring blaNDM-1 and mcr-1.5 genes. Infect. Genet. Evol. 67, 51–54 (2019).
-
Said, H. S. & Abdelmegeed, E. S. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect. Drug Resist. https://doi.org/10.2147/IDR.S189341 (2019).
-
Cai, J., Yang, T., Chen, H. & Bai, Y. Advances in the application of bacteriophage in the inhibiting of bacteria. Heilongjiang Anim. Sci. Veterinary Med. 15, 40–46 (2021).
-
Dedloff, M. R., Effler, C. S., Holban, A. M. & Gestal, M. C. Use of biopolymers in mucosally-administered vaccinations for respiratory disease. Materials 12 (15), 2445 (2019).
-
Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A. & Cesàro, A. The Good, the bad and the ugly of chitosans. Mar. Drugs. 14 (5), 99 (2016).
-
Xing, K., Chen, X. G., Liu, C. S., Cha, D. S. & Park, H. J. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int. J. Food Microbiol. 132, 127–133 (2009).
-
Dutta, P. K., Tripathi, S., Mehrotra, G. K. & Dutta, J. Perspectives for Chitosan based antimicrobial films in food applications. Food Chem. 114 (4), 1173–1182 (2009).
-
Castro, W., Navarro, M. & Biot, C. Medicinal potential of Ciprofloxacin and its derivatives. Future Med. Chem. 5 (1), 81–96 (2013).
-
Thai, T., Salisbury, B. H. & Zito, P. M. Ciprofloxacin. In StatPearls [internet]. StatPearls Publishing (2023).
-
Campoli-Richards, D. M. et al. Ciprofloxacin: a review of its antibacterial activity, Pharmacokinetic properties and therapeutic use. Drugs 35 (4), 373–447 (1988).
-
Ungphakorn, W. Pharmacometric Models of Oral Ciprofloxacin for Children with Malnutrition (University of Strathclyde, 2012).
-
Yassin, A. E. et al. Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone nanoparticles: A characterization and potency study. Nanotechnol Sci. Appl. 16, 59–72 (2023).
-
Ibrahim, H. M., El-Bisi, M. K. & Taha, G. M. El-Alfy, E. A. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J. Appl. Pharm. Sci. 5 (10), 085–090 (2015).
-
Zaki, N. M. & Hafez, M. M. Enhanced antibacterial effect of ceftriaxone sodium-loaded Chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech. 13 (2), 411–421 (2012).
-
Witaningrum, A. M., Wibisono, F. J., Permatasari, D. A. & Effendi, M. H. Detection of class 1 integron encoding gene in multidrug resistance (MDR) citrobacter freundii isolated from healthy broiler chicken. Trop. Anim. Sci. J. 44 (3), 363–368 (2021).
-
Choi, S. H. et al. Prevalence, microbiology, and clinical characteristics of extended-spectrum beta-lactamase-producing Enterobacter spp. Serratia marcescens, citrobacter freundii, and Morganella Morganii in Korea. Eur. J. Clin. Microbiol. Infect. Dis. 26, 557–561 (2007).
-
Yao, Y. et al. Carbapenem-resistant citrobacter spp. As an emerging concern in the hospital-setting: results from a genome-based regional surveillance study. Front. Cell. Infect. Microbiol. 11, 744431 (2021).
-
Zhang, M. et al. Investigation of citrobacter freundii clinical isolates in a Chinese hospital during 2020–2022 revealed genomic characterization of an extremely drug-resistant C. freundii ST257 clinical strain GMU8049 co-carrying Bla NDM-1 and a novel Bla CMY variant. Microbiol. Spectr. 12 (11), e04254–e04223 (2024).
-
Liu, L. et al. Antimicrobial resistance and molecular characterization of citrobacter spp. Causing Extraintestinal Infections Front. Cell. Infect. Microbiol. 11, 737636 (2021).
-
Singh, S., Yadav, A. S., Singh, S. M. & Bharti, P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int. 43 (8), 2027–2030 (2010).
-
Park, Y. J. et al. Occurrence of extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn. Microbiol. Infect. Dis. 51, 265–269 (2005).
-
Namikawa, H. et al. Predictors of mortality from extended spectrum beta-lactamase-producing Enterobacteriaceae bacteremia. Emerg. Microbes Infect. 12, 2217951 (2023).
-
Praharaj, A. K., Khajuria, A., Kumar, M. & Grover, N. Phenotypic detection and molecular characterization of beta-lactamase genes among citrobacter species in a tertiary care hospital. Avicenna J. Med. 6, 17–27 (2016).
-
Ogefere, H. O., Osikobia, J. G. & Omoregie, R. Prevalence of AmpC β-lactamase among Gram-negative bacteria recovered from clinical specimens in Benin City, Nigeria. Trop. J. Pharm. Res. 15 (9), 1947–1953 (2016).
-
Hassan, S. A. & Shobrak, M. Y. Detection of genes mediating beta-lactamase production in isolates of Enterobacteria recovered from wild pets in Saudi Arabia. Vet. World. 8 (12), 1400 (2015).
-
Gür, D. General Characteristics of ESBLs and ESBL Types, New and Reemerging Infections (ESBL’lerin genel özellikleri ve ESBL tipleri, yeni ve yeniden gündeme gelen infeksiyonlar In Turkish). Bilimsel Tıp Yayınevi, Ankara, pp. 5–13 (2004).
-
Kanamori, H. et al. High prevalence of extended-spectrum β-lactamases and Qnr determinants in citrobacter species from japan: dissemination of CTX-M-2. J. Antimicrob. Chemother. 66 (10), 2255–2262 (2011).
-
Wang, J. T. et al. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS One. 10 (3), e0121668 (2015).
-
Mainardi, J. L. et al. Carbapenem resistance in a clinical isolate of citrobacter freundii. Antimicrob. Agents Chemother. 41 (11), 2352–2354 (1997).
-
Perez-Etayo, L., Berzosa, M., Gonzalez, D. & Vitas, A. I. Prevalence of integrons and insertion sequencesin ESBL-Producing E. coli isolated from different sources in Navarra, Spain. Int. J. Environ. Res. Public. Health. 15 (10), 2308 (2018).
-
Blahna, M. T. et al. The role of horizontal gene transfer in the spread of trimethoprim–sul Famethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J. Antimicrob. Chemother. 57 (4), 666–672 (2006).
-
Cantón, R. & Ruiz-Garbajosa, P. Co-resistance: an opportunity for the bacteria and resistance genes. Curr. Opin. Pharmacol. 11, 477–485 (2011).
-
Sarker, S. et al. Mobile Colistin-Resistant genes mcr-1, mcr-2, and mcr-3 identified in diarrheal pathogens among Infants, Children, and adults in bangladesh: implications for the future. Antibiotics 13 (6), 534 (2024).
-
Usui, M. et al. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. J. Glob Antimicrob. Resist. 24, 383–386 (2021).
-
Robicsek, A., Jacoby, G. A. & Hooper, D. C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629–640 (2006).
-
Tewari, R., Mitra, S., Venugopal, N., Das, S., Ganaie, F., Sen, A., … Shome, B. R.Phenotypic and molecular characterization of extended spectrum β-lactamase, ampc β-lactamase and metallo β-lactamase producing Klebsiella spp. from farm animals in India. Indian J Anim Res.53(7), 938–943 (2019).
-
Jacoby, G. A., Griffin, C. M. & Hooper, D. C. Citrobacter spp. As a source of QnrB alleles. Antimicrob. Agents Chemother. 55 (11), 4979–4984 (2011).
-
Sheppard, A. E. et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene BlaKPC. Antimicrob. Agents Chemother. 60, 3767–3778 (2016).
-
Little, K., Zheng, A. J., Gibbs, K. A. & J., & Cell shape and population migration are distinct steps of proteus mirabilis swarming that are decoupled on high-percentage agar. J. bacteriol. 201 (11), 10–1128 (2019).
-
Vaezifar, S. et al. Effects of some parameters on particle size distribution of Chitosan nanoparticles prepared by ionic gelation method. J. Clust Sci. 24, 891–903 (2013).
-
Essa, E. E. et al. A. The antibacterial activity of Egyptian Wasp chitosan-based nanoparticles against important antibiotic-resistant pathogens. Molecules 27 (21), 7189 (2022).
-
Loutfy, S. A. et al. Synthesis, characterization and cytotoxic evaluation of Chitosan nanoparticles: in vitro liver cancer model. Adv. Natl. Sci. Nanosci. Nanotechnol. 7 (3), 035008 (2016).
-
Godoy, C. A. et al. Caro Fuentes, N. Antimicrobial and antibiofilm activity of Chitosan nanoparticles against Staphylococcus aureus strains isolated from bovine mastitis milk. Pharmaceutics 17 (2), 186 (2025).
-
Amri, Y., Fajri, R., Novitasari, P. & Zulfajri, M. The effect of tripolyphosphate (tpp) volumes on the synthesis of chitosan nanoparticles using ionic gelation method. In 2nd International Conference on Science, Technology, and Modern Society (ICSTMS 2020) Atlantis Press. 213–216, (2021).
-
LUTHFIYANA, N., LEMBANG, B. I. J. A. S. N. U. G. R. A. E. N. I. C. D. & RATRINIA, P. W. Characteristics and antibacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla sp.) in Tarakan Waters, North Kalimantan, Indonesia. Biodiversitas Biodiv https://doi.org/10.13057/biodiv/d230820 (2022).
-
Costa, E. M., Silva, S. & Pintado, M. Chitosan nanoparticles production: optimization of physical parameters, biochemical characterization, and stability upon storage. Appl. Sci. 13 (3), 1900 (2023).
-
Jiang, T., Wang, Y., Yu, Z. & Du, L. Synthesis, characterization of chitosan/tripolyphosphate nanoparticles loaded with 4-chloro-2-methylphenoxyacetate sodium salt and its herbicidal activity against bidens Pilosa L. Sci. Rep. 14 (1), 18754 (2024).
-
Ali, Z. H., Al-Saady, M. A. A. J., Aldujaili, N. H., Banoon, R., Abboodi, A. & S., & Evaluation of the antibacterial inhibitory activity of Chitosan nanoparticles biosynthesized by Streptococcus thermophilus. J. Nanostruct. 12 (3), 675–685 (2022).
-
Ahmed, F. et al. In vitro assessment of the antimicrobial efficacy of Chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. J. Fish. Dis. 43 (9), 1049–1063 (2020).
-
Parveen, A., Yalagatti, M. S., Abbaraju, V. & Deshpande, R. Emphasized mechanistic antimicrobial study of biofunctionalized silver nanoparticles on model proteus mirabilis. J. Drug Deliv. 2018 (1), 3850139 (2018).
-
Qi, L., Xu, Z., Jiang, X., Hu, C. & Zou, X. Preparation and antibacterial activity of Chitosan nanoparticles. Carbohydr. Res. 339 (16), 2693–2700 (2004).
-
Chandrasekaran, M. & Kim, K. D. Chun. S. C. Antibacterial activity of Chitosan nanoparticles: a review. Processes 8 (9), 1173 (2020).
-
Bettelheim, K., Evangelidis, H., Pearce, J., Sowers, E. & Strockbine, N. A. Isolation of a citrobacter freundii strain which carries the Escherichia coli O157 antigen. J. Clin. Microbiol. 31 (3), 760–761 (1993).
-
MacFaddin, J. Biochemical tests for identification of medical bacteria (3rd ed. Lippincott, W., & Wilkins.) Philadelphia, PA. 113 (7), (2000).
-
Zahraei, S. M., RABANI, K. M., Safarchi, A., Peyghambari, S. M. & Mahzounieh, M. Detection of stx1, stx2, eae, EspB and hly genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. J. Vet. Res. 62 (2), 37–42 (2007).
-
Imran, A. Z. K., Ali, A. J. M. & Shareef, H. K. Isolation and molecular identification of citrobacter freundii from diarrheal patient in Babylon Province, Iraq. Plant. Arch. 20 (1), 2861–2865 (2020).
-
CLSI Performance standards for antimicrobial disk susceptibility testing. In CLSI Supplement M100 34th edn (Clinical and Laboratory Standards Institute, 2024).
-
Decôme., M., Cuq, B., Fairbrother, J. H., Gatel, L. & Conversy, B. Clinical significance of proteus mirabilis bacteriuria in dogs, risk factors and antimicrobial susceptibility. Can. J. Vet. Res. 84 (4), 252–258 (2020).
-
Ahmed, T. et al. R. First identification and genomic features of multidrug-resistant Citrobacter freundii ST669 strain isolated from a domesticated duck in Bangladesh. Heliyon 10(17), e36828 (2024).
-
Shinu, P. Antimicrobial resistance, phenotypic characteristics, and biofilm production in citrobacter freundii isolates obtained from urinary tract infections. J. Pharmacol. Pharmacother. 13 (4), 375–381 (2022).
-
Rahman, A., Shamsuzzaman, S. M. & Dola, N. Z. Antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii isolated from patients of a tertiary care hospital, bangladesh: antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii. Inter Arabic J. Antimicrob. Agents https://doi.org/10.3823/865 (2022).
-
Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. microbiol. infect. 18 (3), 268–281 (2012).
-
Martineau, F. et al. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 38 (2), 798–803 (2000).
-
Archambault, M. et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar corvallis from Thailand, Bulgaria, and Denmark. Microb. Drug Resist. 12 (3), 192–198 (2006).
-
Colom, K. et al. Simple and reliable multiplex PCR assay for detection of Bla TEM, Bla SHV and Bla OXA–1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 223 (2), 147–151 (2003).
-
Mirsalehian, A. et al. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 36 (1), 70–74 (2010).
-
Kim, J. et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infect. Chemother. 41 (3), 181–184 (2009).
-
Dallenne, C., Da Costa, A., Decré, D., Favier, C. & Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important B-lactmases in Enterobacteriaceae. J. Antimicrobe Chemother. 65 (3), 490–495 (2010).
-
Hou, M. et al. Molecular epidemiology, clinical characteristics and risk factors for bloodstream infection of multidrug-resistant Klebsiella pneumoniae infections in pediatric patients from Tianjin, China. Infect. drug resist. 15, 7015–7023 (2022).
-
Sjölander, I. et al. Detection of NDM-2-producing acinetobacter baumannii and VIM-producing Pseudomonas aeruginosa in Palestine. J. Glob Antimicrobe Resist. 2 (2), 93–97 (2014).
-
Xia, C. et al. Epidemiological and genomic characteristics of global Bla NDM-carrying Escherichia coli. Ann. clin. microbiol. Antimicrobe. 23 (1), 58 (2024).
-
Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V. & Woodward, M. J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 53 (2), 208–216 (2004).
-
Van, T. T. H., Chin, J., Chapman, T., Tran, L. T. & Coloe, P. J. Safety of Raw meat and shellfish in vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 124 (3), 217–223 (2008).
-
Robicsek, A., Strahilevitz, J., Sahm, D. F. & Jacoby, G. A. &Hooper, D. C. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the united States. AAC 50 (8), 2872–2874 (2006).
-
Poppe, C. et al. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can. J. Vet. Res. 70 (2), 105 (2006).
-
Toro, C. S. et al. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol. infect. 133 (1), 81–86 (2005).
-
Warsa, U. C. et al. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. (Tokyo). 49 (11), 1127–1132 (1996).
-
Belén Flórez, A. et al. Molecular identification and quantification of Tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. Biomed. Res. Int. 2014 (1), 746859 (2014).
-
Levesque, C., Piche, L., Larose, C. & Roy, P. H. PCR mapping of integrons reveals several novel combinations of resistance genes. ACC 39 (1), 185–191 (1995).
-
Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: a Microbiological and molecular biological study. Lancet Infect. Dis. 16 (2), 161–168 (2016).
-
Breidt, F., Hazes, J. S. & Mcfeeters, R. F. Independent effects of acetic acid and pH on survival of Escherichia coli in simulated acidified pickle products. J. Food. Prot. 67 (1), 12–18. https://doi.org/10.4315/0362-028x-67.1.12 (2004).
-
Mohamed, A. G. T. Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indones J. Biotechnol. 18 (2), 75–82 (2013).
-
Wiegand, I., Hilpert, K. & Hancock, R. Agar and broth Dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).
-
Elshikh, M. et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 38, 1015–1019 (2016).
-
Diao, Y., Yu, X., Zhang, C. & Jing, Y. Quercetin-grafted Chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. JFST 57, 2259–2268 (2020).
-
Abedian, Z. et al. Antibacterial activity of high-molecular-weight and low-molecular-weight Chitosan upon oral pathogens. J. Conserv. Dent. 22 (2), 169–174 (2019).
-
French, G. L. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58 (6), 1107–1117 (2006).
