Chitosan mitigates pan drug resistance in citrobacter freundii exhibiting AmpC and ESBL from Egyptian livestock

chitosan-mitigates-pan-drug-resistance-in-citrobacter-freundii-exhibiting-ampc-and-esbl-from-egyptian-livestock
Chitosan mitigates pan drug resistance in citrobacter freundii exhibiting AmpC and ESBL from Egyptian livestock

References

  1. Räisänen, K. et al. Three clusters of carbapenemase-producing citrobacter freundii in Finland 2016-20. J. Antimicrob. Chemother. 76, 2697–2701 (2021).

    Google Scholar 

  2. Moussa, S. et al. Citrobacter freundii skin infection in an immunocompetent subject simulating varicella: A Treatment-Resistant case. Dermatol. Online J. 8, 1–3 (2023).

    Google Scholar 

  3. Hewitt, M. K., Klowak, J. A., Pernica, J. M. & Leung, J. Citrobacter Koseri meningitis and septicemia in a neonate with borderline fever at home. Cmaj 193 (41), E1592–E1594 (2021).

    Google Scholar 

  4. Céspedes, L. & Fonseca, Y. Antimicrobial susceptibility of citrobacter Koseri isolated on clinical samples of hospitalized patients. J. Microbiol. Exp. 10 (2), 54–57 (2022).

    Google Scholar 

  5. Forsythe, S. J., Abbott, S. L. & Pitout, J. Klebsiella, enterobacter, Citrobacter, cronobacter, serratia, plesiomonas, and other Enterobacteriaceae, in Manual of Clinical Microbiology (John Wiley & Sons, Ltd), 714–737 (2015).

  6. Liu, L. et al. Antimicrobial resistance and cytotoxicity of citrobacter spp. In Maanshan Anhui Province, China. Front. Microbiol. 8, 1357 (2017).

    Google Scholar 

  7. Godoy, S. N. & Matushima, E. R. A survey of diseases in passeriform birds obtained from illegal wildlife trade in Sao Paulo city, Brazil. J. Avian Med. Surg. 24, 199–209 (2010).

    Google Scholar 

  8. Liu, H., Zhao, Z., Xue, Y., Ding, K. & Xue, Q. Fatal cases of citrobacter freundii septicemia and encephalitis in sheep. J. Vet. Diagn. Invest. 30 (2), 245–248 (2018).

    Google Scholar 

  9. Ibrahim, M., Bahout, A., Ayoub, M., El-Said, E. I. & Abd ElAal, S. F. Chemical and Microbiological evaluation of Raw Buffalo milk locally produced in Sharkia Governorate. Zagazig Vet. J. 47 (4), 352–363 (2019).

    Google Scholar 

  10. Ombarak, R. & Elbagory, A. R. Bacteriological quality and safety of Raw cow’s and buffalo’s milk sold in menoufia Governorate, Egypt. J. Curr. Vet. Res. 9 (1), 102–113 (2015).

    Google Scholar 

  11. Nossair, M. A., Khaled, K., Shabasy, E. & Samaha, I. A. Detection of some enteric pathogens in retailed meat. Alex J. Vet. Sci. https://doi.org/10.5455/ajvs.171536 (2015).

    Google Scholar 

  12. Abd El-Tawab, A. A., Selim, A. O. & Soliman, A. M. Phenotypic and genotypic characterization of some bacterial isolates (Escherichia coli, Klebsiella oxytoca) from chickens. Benha Vet. Med. J. 35 (2), 284–302 (2018).

    Google Scholar 

  13. Shaikh, S., Fatima, J., Shakil, S., Rizvi, S. M. D. & Kamal, M. A. Antibiotic resistance and extended spectrum betalactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 22 (1), 90–101 (2015).

    Google Scholar 

  14. Ejaz, H. et al. M. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE. 16 (1), e0245126 (2021).

    Google Scholar 

  15. Mestrovic, T. et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. Lancet Public. Health. 7 (11), e897–e913 (2022).

    Google Scholar 

  16. Liu, L. et al. Genetic Diversity, multidrug Resistance, and virulence of citrobacter freundii from diarrheal patients and healthy individuals. Front. Cell. Infect. Microbiol. 8, 233 (2018).

    Google Scholar 

  17. Huang, J. et al. Emergence of Tigecycline and Carbapenem-Resistant citrobacter freundii Co-Carrying tmexCD1- toprJ1, blaKPC-2, and blaNDM-1 from a sepsis patient. Infect. Drug Resist. 16, 5855–5868 (2023).

    Google Scholar 

  18. Dolejska, M. et al. Plasmids carrying Bla CTX-M-1 and Qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 66 (4), 757–764 (2011).

    Google Scholar 

  19. Abrar, S. et al. Distribution of Bla (CTX—M), Bla (TEM), Bla (SHV) and Bla (OXA) genes in Extended-spectrum-β-lactamase-producing clinical isolates: A threeyear multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control. 8, 80 (2019).

    Google Scholar 

  20. Rao, M. J., Harle, S. & Padmavathy, M. Prevalence of extended spectrum beta-lactamases and amp-c beta-lactamases in clinical isolates of gram-negative bacilli at a tertiary care hospital. JEMDS 7 (39), 5072–5077 (2018).

    Google Scholar 

  21. Bonnet, R. et al. Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240! Gly. Antimicrob. Agents Chemother. 45 (8), 2269–2275 (2001).

    Google Scholar 

  22. Choi, S. H. et al. Emergence of antibiotic resistance during therapy for infections caused by Enterobacteriaceae producing AmpC β-lactamase: implications for antibiotic use. Antimicrob. Agents Chemother. 52, 995–1000 (2008).

    Google Scholar 

  23. Pepperell, C., Kus, J. V., Gardam, M. A., Humar, A. & Burrows, L. L. Low virulence citrobacter species encode resistance to multiple antimicrobials. Antimicrob. Agents Chemother. 46 (11), 3555–3560 (2002).

    Google Scholar 

  24. Babiker, A. et al. Tyne, D. Clinical and genomic epidemiology of Carbapenem-Nonsusceptible Citrobacter spp. At a tertiary health care center over 2 decades. J. Clin. Microbiol. 58 (9), e00275–e00220 (2020). Van.

    Google Scholar 

  25. Yao, Y. et al. Carbapenem-Resistant Citrobacter spp. As an emerging concern in the Hospital-Setting: results from a Genome-Based regional surveillance study. Front. Cell. Infect. Microbiol. 11, 744431 (2021).

    Google Scholar 

  26. Bush, K. & Bradford, P. A. Epidemiology of β-Lactamase-Producing pathogens. Clin. Microbiol. Rev. 33 (2), e00047–e00019 (2020).

    Google Scholar 

  27. Hidayatullah, A. R. et al. D. A review of the opportunistic pathogen citrobacter freundii in piglets post weaning: public health importance. Sys Rev. Pharm. 11, 767–773 (2020).

    Google Scholar 

  28. Girlich, D., Bonnin, R. A., Dortet, L. & Naas, T. Genetics of acquired antibiotic resistance genes in proteus spp. Front. Microbiol. 11, 256 (2020).

    Google Scholar 

  29. World Health Organization. ; Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2019.Critically Important Antimicrobials for Human Medicine. 6th Revision (2018).

  30. Hu, Y. Y. et al. X. Colistin resistance gene mcr-1 in gut flora of children. Int. J. Antimicrob. Agents. 50 (4), 593–597 (2017).

    Google Scholar 

  31. Ju, X. et al. Epidemiology and molecular characteristics of mcr-9 in citrobacter spp. From healthy individuals and patients in China. Microbiol. Spectr. 10, e0134622 (2022).

    Google Scholar 

  32. Faccone, D. et al. Characterization of a multidrug resistant citrobacter amalonaticus clinical isolate harboring blaNDM-1 and mcr-1.5 genes. Infect. Genet. Evol. 67, 51–54 (2019).

    Google Scholar 

  33. Said, H. S. & Abdelmegeed, E. S. Emergence of multidrug resistance and extensive drug resistance among enterococcal clinical isolates in Egypt. Infect. Drug Resist. https://doi.org/10.2147/IDR.S189341 (2019).

    Google Scholar 

  34. Cai, J., Yang, T., Chen, H. & Bai, Y. Advances in the application of bacteriophage in the inhibiting of bacteria. Heilongjiang Anim. Sci. Veterinary Med. 15, 40–46 (2021).

    Google Scholar 

  35. Dedloff, M. R., Effler, C. S., Holban, A. M. & Gestal, M. C. Use of biopolymers in mucosally-administered vaccinations for respiratory disease. Materials 12 (15), 2445 (2019).

    Google Scholar 

  36. Bellich, B., D’Agostino, I., Semeraro, S., Gamini, A. & Cesàro, A. The Good, the bad and the ugly of chitosans. Mar. Drugs. 14 (5), 99 (2016).

    Google Scholar 

  37. Xing, K., Chen, X. G., Liu, C. S., Cha, D. S. & Park, H. J. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. Int. J. Food Microbiol. 132, 127–133 (2009).

    Google Scholar 

  38. Dutta, P. K., Tripathi, S., Mehrotra, G. K. & Dutta, J. Perspectives for Chitosan based antimicrobial films in food applications. Food Chem. 114 (4), 1173–1182 (2009).

    Google Scholar 

  39. Castro, W., Navarro, M. & Biot, C. Medicinal potential of Ciprofloxacin and its derivatives. Future Med. Chem. 5 (1), 81–96 (2013).

    Google Scholar 

  40. Thai, T., Salisbury, B. H. & Zito, P. M. Ciprofloxacin. In StatPearls [internet]. StatPearls Publishing (2023).

  41. Campoli-Richards, D. M. et al. Ciprofloxacin: a review of its antibacterial activity, Pharmacokinetic properties and therapeutic use. Drugs 35 (4), 373–447 (1988).

    Google Scholar 

  42. Ungphakorn, W. Pharmacometric Models of Oral Ciprofloxacin for Children with Malnutrition (University of Strathclyde, 2012).

  43. Yassin, A. E. et al. Chitosan-Coated Azithromycin/Ciprofloxacin-Loaded Polycaprolactone nanoparticles: A characterization and potency study. Nanotechnol Sci. Appl. 16, 59–72 (2023).

    Google Scholar 

  44. Ibrahim, H. M., El-Bisi, M. K. & Taha, G. M. El-Alfy, E. A. Chitosan nanoparticles loaded antibiotics as drug delivery biomaterial. J. Appl. Pharm. Sci. 5 (10), 085–090 (2015).

    Google Scholar 

  45. Zaki, N. M. & Hafez, M. M. Enhanced antibacterial effect of ceftriaxone sodium-loaded Chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech. 13 (2), 411–421 (2012).

    Google Scholar 

  46. Witaningrum, A. M., Wibisono, F. J., Permatasari, D. A. & Effendi, M. H. Detection of class 1 integron encoding gene in multidrug resistance (MDR) citrobacter freundii isolated from healthy broiler chicken. Trop. Anim. Sci. J. 44 (3), 363–368 (2021).

    Google Scholar 

  47. Choi, S. H. et al. Prevalence, microbiology, and clinical characteristics of extended-spectrum beta-lactamase-producing Enterobacter spp. Serratia marcescens, citrobacter freundii, and Morganella Morganii in Korea. Eur. J. Clin. Microbiol. Infect. Dis. 26, 557–561 (2007).

    Google Scholar 

  48. Yao, Y. et al. Carbapenem-resistant citrobacter spp. As an emerging concern in the hospital-setting: results from a genome-based regional surveillance study. Front. Cell. Infect. Microbiol. 11, 744431 (2021).

    Google Scholar 

  49. Zhang, M. et al. Investigation of citrobacter freundii clinical isolates in a Chinese hospital during 2020–2022 revealed genomic characterization of an extremely drug-resistant C. freundii ST257 clinical strain GMU8049 co-carrying Bla NDM-1 and a novel Bla CMY variant. Microbiol. Spectr. 12 (11), e04254–e04223 (2024).

    Google Scholar 

  50. Liu, L. et al. Antimicrobial resistance and molecular characterization of citrobacter spp. Causing Extraintestinal Infections Front. Cell. Infect. Microbiol. 11, 737636 (2021).

    Google Scholar 

  51. Singh, S., Yadav, A. S., Singh, S. M. & Bharti, P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int. 43 (8), 2027–2030 (2010).

    Google Scholar 

  52. Park, Y. J. et al. Occurrence of extended-spectrum beta-lactamases among chromosomal AmpC-producing Enterobacter cloacae, citrobacter freundii, and Serratia marcescens in Korea and investigation of screening criteria. Diagn. Microbiol. Infect. Dis. 51, 265–269 (2005).

    Google Scholar 

  53. Namikawa, H. et al. Predictors of mortality from extended spectrum beta-lactamase-producing Enterobacteriaceae bacteremia. Emerg. Microbes Infect. 12, 2217951 (2023).

    Google Scholar 

  54. Praharaj, A. K., Khajuria, A., Kumar, M. & Grover, N. Phenotypic detection and molecular characterization of beta-lactamase genes among citrobacter species in a tertiary care hospital. Avicenna J. Med. 6, 17–27 (2016).

    Google Scholar 

  55. Ogefere, H. O., Osikobia, J. G. & Omoregie, R. Prevalence of AmpC β-lactamase among Gram-negative bacteria recovered from clinical specimens in Benin City, Nigeria. Trop. J. Pharm. Res. 15 (9), 1947–1953 (2016).

    Google Scholar 

  56. Hassan, S. A. & Shobrak, M. Y. Detection of genes mediating beta-lactamase production in isolates of Enterobacteria recovered from wild pets in Saudi Arabia. Vet. World. 8 (12), 1400 (2015).

    Google Scholar 

  57. Gür, D. General Characteristics of ESBLs and ESBL Types, New and Reemerging Infections (ESBL’lerin genel özellikleri ve ESBL tipleri, yeni ve yeniden gündeme gelen infeksiyonlar In Turkish). Bilimsel Tıp Yayınevi, Ankara, pp. 5–13 (2004).

  58. Kanamori, H. et al. High prevalence of extended-spectrum β-lactamases and Qnr determinants in citrobacter species from japan: dissemination of CTX-M-2. J. Antimicrob. Chemother. 66 (10), 2255–2262 (2011).

    Google Scholar 

  59. Wang, J. T. et al. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS One. 10 (3), e0121668 (2015).

    Google Scholar 

  60. Mainardi, J. L. et al. Carbapenem resistance in a clinical isolate of citrobacter freundii. Antimicrob. Agents Chemother. 41 (11), 2352–2354 (1997).

    Google Scholar 

  61. Perez-Etayo, L., Berzosa, M., Gonzalez, D. & Vitas, A. I. Prevalence of integrons and insertion sequencesin ESBL-Producing E. coli isolated from different sources in Navarra, Spain. Int. J. Environ. Res. Public. Health. 15 (10), 2308 (2018).

    Google Scholar 

  62. Blahna, M. T. et al. The role of horizontal gene transfer in the spread of trimethoprim–sul Famethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J. Antimicrob. Chemother. 57 (4), 666–672 (2006).

    Google Scholar 

  63. Cantón, R. & Ruiz-Garbajosa, P. Co-resistance: an opportunity for the bacteria and resistance genes. Curr. Opin. Pharmacol. 11, 477–485 (2011).

    Google Scholar 

  64. Sarker, S. et al. Mobile Colistin-Resistant genes mcr-1, mcr-2, and mcr-3 identified in diarrheal pathogens among Infants, Children, and adults in bangladesh: implications for the future. Antibiotics 13 (6), 534 (2024).

    Google Scholar 

  65. Usui, M. et al. Decreased colistin resistance and mcr-1 prevalence in pig-derived Escherichia coli in Japan after banning colistin as a feed additive. J. Glob Antimicrob. Resist. 24, 383–386 (2021).

    Google Scholar 

  66. Robicsek, A., Jacoby, G. A. & Hooper, D. C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629–640 (2006).

    Google Scholar 

  67. Tewari, R., Mitra, S., Venugopal, N., Das, S., Ganaie, F., Sen, A., … Shome, B. R.Phenotypic and molecular characterization of extended spectrum β-lactamase, ampc β-lactamase and metallo β-lactamase producing Klebsiella spp. from farm animals in India. Indian J Anim Res.53(7), 938–943 (2019).

  68. Jacoby, G. A., Griffin, C. M. & Hooper, D. C. Citrobacter spp. As a source of QnrB alleles. Antimicrob. Agents Chemother. 55 (11), 4979–4984 (2011).

    Google Scholar 

  69. Sheppard, A. E. et al. Nested Russian doll-like genetic mobility drives rapid dissemination of the carbapenem resistance gene BlaKPC. Antimicrob. Agents Chemother. 60, 3767–3778 (2016).

    Google Scholar 

  70. Little, K., Zheng, A. J., Gibbs, K. A. & J., & Cell shape and population migration are distinct steps of proteus mirabilis swarming that are decoupled on high-percentage agar. J. bacteriol. 201 (11), 10–1128 (2019).

    Google Scholar 

  71. Vaezifar, S. et al. Effects of some parameters on particle size distribution of Chitosan nanoparticles prepared by ionic gelation method. J. Clust Sci. 24, 891–903 (2013).

    Google Scholar 

  72. Essa, E. E. et al. A. The antibacterial activity of Egyptian Wasp chitosan-based nanoparticles against important antibiotic-resistant pathogens. Molecules 27 (21), 7189 (2022).

    Google Scholar 

  73. Loutfy, S. A. et al. Synthesis, characterization and cytotoxic evaluation of Chitosan nanoparticles: in vitro liver cancer model. Adv. Natl. Sci. Nanosci. Nanotechnol. 7 (3), 035008 (2016).

    Google Scholar 

  74. Godoy, C. A. et al. Caro Fuentes, N. Antimicrobial and antibiofilm activity of Chitosan nanoparticles against Staphylococcus aureus strains isolated from bovine mastitis milk. Pharmaceutics 17 (2), 186 (2025).

    Google Scholar 

  75. Amri, Y., Fajri, R., Novitasari, P. & Zulfajri, M. The effect of tripolyphosphate (tpp) volumes on the synthesis of chitosan nanoparticles using ionic gelation method. In 2nd International Conference on Science, Technology, and Modern Society (ICSTMS 2020) Atlantis Press. 213–216, (2021).

  76. LUTHFIYANA, N., LEMBANG, B. I. J. A. S. N. U. G. R. A. E. N. I. C. D. & RATRINIA, P. W. Characteristics and antibacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla sp.) in Tarakan Waters, North Kalimantan, Indonesia. Biodiversitas Biodiv https://doi.org/10.13057/biodiv/d230820 (2022).

    Google Scholar 

  77. Costa, E. M., Silva, S. & Pintado, M. Chitosan nanoparticles production: optimization of physical parameters, biochemical characterization, and stability upon storage. Appl. Sci. 13 (3), 1900 (2023).

    Google Scholar 

  78. Jiang, T., Wang, Y., Yu, Z. & Du, L. Synthesis, characterization of chitosan/tripolyphosphate nanoparticles loaded with 4-chloro-2-methylphenoxyacetate sodium salt and its herbicidal activity against bidens Pilosa L. Sci. Rep. 14 (1), 18754 (2024).

    Google Scholar 

  79. Ali, Z. H., Al-Saady, M. A. A. J., Aldujaili, N. H., Banoon, R., Abboodi, A. & S., & Evaluation of the antibacterial inhibitory activity of Chitosan nanoparticles biosynthesized by Streptococcus thermophilus. J. Nanostruct. 12 (3), 675–685 (2022).

    Google Scholar 

  80. Ahmed, F. et al. In vitro assessment of the antimicrobial efficacy of Chitosan nanoparticles against major fish pathogens and their cytotoxicity to fish cell lines. J. Fish. Dis. 43 (9), 1049–1063 (2020).

    Google Scholar 

  81. Parveen, A., Yalagatti, M. S., Abbaraju, V. & Deshpande, R. Emphasized mechanistic antimicrobial study of biofunctionalized silver nanoparticles on model proteus mirabilis. J. Drug Deliv. 2018 (1), 3850139 (2018).

    Google Scholar 

  82. Qi, L., Xu, Z., Jiang, X., Hu, C. & Zou, X. Preparation and antibacterial activity of Chitosan nanoparticles. Carbohydr. Res. 339 (16), 2693–2700 (2004).

    Google Scholar 

  83. Chandrasekaran, M. & Kim, K. D. Chun. S. C. Antibacterial activity of Chitosan nanoparticles: a review. Processes 8 (9), 1173 (2020).

    Google Scholar 

  84. Bettelheim, K., Evangelidis, H., Pearce, J., Sowers, E. & Strockbine, N. A. Isolation of a citrobacter freundii strain which carries the Escherichia coli O157 antigen. J. Clin. Microbiol. 31 (3), 760–761 (1993).

    Google Scholar 

  85. MacFaddin, J. Biochemical tests for identification of medical bacteria (3rd ed. Lippincott, W., & Wilkins.) Philadelphia, PA. 113 (7), (2000).

  86. Zahraei, S. M., RABANI, K. M., Safarchi, A., Peyghambari, S. M. & Mahzounieh, M. Detection of stx1, stx2, eae, EspB and hly genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. J. Vet. Res. 62 (2), 37–42 (2007).

    Google Scholar 

  87. Imran, A. Z. K., Ali, A. J. M. & Shareef, H. K. Isolation and molecular identification of citrobacter freundii from diarrheal patient in Babylon Province, Iraq. Plant. Arch. 20 (1), 2861–2865 (2020).

    Google Scholar 

  88. CLSI Performance standards for antimicrobial disk susceptibility testing. In CLSI Supplement M100 34th edn (Clinical and Laboratory Standards Institute, 2024).

    Google Scholar 

  89. Decôme., M., Cuq, B., Fairbrother, J. H., Gatel, L. & Conversy, B. Clinical significance of proteus mirabilis bacteriuria in dogs, risk factors and antimicrobial susceptibility. Can. J. Vet. Res. 84 (4), 252–258 (2020).

    Google Scholar 

  90. Ahmed, T. et al. R. First identification and genomic features of multidrug-resistant Citrobacter freundii ST669 strain isolated from a domesticated duck in Bangladesh. Heliyon 10(17), e36828 (2024).

    Google Scholar 

  91. Shinu, P. Antimicrobial resistance, phenotypic characteristics, and biofilm production in citrobacter freundii isolates obtained from urinary tract infections. J. Pharmacol. Pharmacother. 13 (4), 375–381 (2022).

    Google Scholar 

  92. Rahman, A., Shamsuzzaman, S. M. & Dola, N. Z. Antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii isolated from patients of a tertiary care hospital, bangladesh: antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii. Inter Arabic J. Antimicrob. Agents https://doi.org/10.3823/865 (2022).

    Google Scholar 

  93. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. microbiol. infect. 18 (3), 268–281 (2012).

    Google Scholar 

  94. Martineau, F. et al. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 38 (2), 798–803 (2000).

    Google Scholar 

  95. Archambault, M. et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar corvallis from Thailand, Bulgaria, and Denmark. Microb. Drug Resist. 12 (3), 192–198 (2006).

    Google Scholar 

  96. Colom, K. et al. Simple and reliable multiplex PCR assay for detection of Bla TEM, Bla SHV and Bla OXA–1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 223 (2), 147–151 (2003).

    Google Scholar 

  97. Mirsalehian, A. et al. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns 36 (1), 70–74 (2010).

    Google Scholar 

  98. Kim, J. et al. Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infect. Chemother. 41 (3), 181–184 (2009).

    Google Scholar 

  99. Dallenne, C., Da Costa, A., Decré, D., Favier, C. & Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important B-lactmases in Enterobacteriaceae. J. Antimicrobe Chemother. 65 (3), 490–495 (2010).

    Google Scholar 

  100. Hou, M. et al. Molecular epidemiology, clinical characteristics and risk factors for bloodstream infection of multidrug-resistant Klebsiella pneumoniae infections in pediatric patients from Tianjin, China. Infect. drug resist. 15, 7015–7023 (2022).

    Google Scholar 

  101. Sjölander, I. et al. Detection of NDM-2-producing acinetobacter baumannii and VIM-producing Pseudomonas aeruginosa in Palestine. J. Glob Antimicrobe Resist. 2 (2), 93–97 (2014).

    Google Scholar 

  102. Xia, C. et al. Epidemiological and genomic characteristics of global Bla NDM-carrying Escherichia coli. Ann. clin. microbiol. Antimicrobe. 23 (1), 58 (2024).

    Google Scholar 

  103. Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V. & Woodward, M. J. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 53 (2), 208–216 (2004).

    Google Scholar 

  104. Van, T. T. H., Chin, J., Chapman, T., Tran, L. T. & Coloe, P. J. Safety of Raw meat and shellfish in vietnam: an analysis of Escherichia coli isolations for antibiotic resistance and virulence genes. Int. J. Food Microbiol. 124 (3), 217–223 (2008).

    Google Scholar 

  105. Robicsek, A., Strahilevitz, J., Sahm, D. F. & Jacoby, G. A. &Hooper, D. C. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the united States. AAC 50 (8), 2872–2874 (2006).

    Google Scholar 

  106. Poppe, C. et al. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada. Can. J. Vet. Res. 70 (2), 105 (2006).

    Google Scholar 

  107. Toro, C. S. et al. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol. infect. 133 (1), 81–86 (2005).

    Google Scholar 

  108. Warsa, U. C. et al. Detection of tet(K) and tet(M) in Staphylococcus aureus of Asian countries by the polymerase chain reaction. J. Antibiot. (Tokyo). 49 (11), 1127–1132 (1996).

    Google Scholar 

  109. Belén Flórez, A. et al. Molecular identification and quantification of Tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. Biomed. Res. Int. 2014 (1), 746859 (2014).

    Google Scholar 

  110. Levesque, C., Piche, L., Larose, C. & Roy, P. H. PCR mapping of integrons reveals several novel combinations of resistance genes. ACC 39 (1), 185–191 (1995).

    Google Scholar 

  111. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: a Microbiological and molecular biological study. Lancet Infect. Dis. 16 (2), 161–168 (2016).

    Google Scholar 

  112. Breidt, F., Hazes, J. S. & Mcfeeters, R. F. Independent effects of acetic acid and pH on survival of Escherichia coli in simulated acidified pickle products. J. Food. Prot. 67 (1), 12–18. https://doi.org/10.4315/0362-028x-67.1.12 (2004).

    Google Scholar 

  113. Mohamed, A. G. T. Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indones J. Biotechnol. 18 (2), 75–82 (2013).

    Google Scholar 

  114. Wiegand, I., Hilpert, K. & Hancock, R. Agar and broth Dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    Google Scholar 

  115. Elshikh, M. et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett. 38, 1015–1019 (2016).

    Google Scholar 

  116. Diao, Y., Yu, X., Zhang, C. & Jing, Y. Quercetin-grafted Chitosan prepared by free radical grafting: characterization and evaluation of antioxidant and antibacterial properties. JFST 57, 2259–2268 (2020).

    Google Scholar 

  117. Abedian, Z. et al. Antibacterial activity of high-molecular-weight and low-molecular-weight Chitosan upon oral pathogens. J. Conserv. Dent. 22 (2), 169–174 (2019).

    Google Scholar 

  118. French, G. L. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58 (6), 1107–1117 (2006).

    Google Scholar 

Download references