Dynamic microdevice culture during bovine oocyte maturation decreases lipid accumulation and improve blastocyst cell numbers

dynamic-microdevice-culture-during-bovine-oocyte-maturation-decreases-lipid-accumulation-and-improve-blastocyst-cell-numbers
Dynamic microdevice culture during bovine oocyte maturation decreases lipid accumulation and improve blastocyst cell numbers

References

  1. Berglund, B. Genetic improvement of dairy cow reproductive performance. Reprod. Domest. Anim. 43, 89–95 (2008).

    Google Scholar 

  2. Bonilla, L., Block, J., Denicol, A. C. & Hansen, P. J. Consequences of transfer of an in vitro-produced embryo for the dam and resultant calf. J. Dairy. Sci. 97, 229–239 (2014).

    Google Scholar 

  3. Ferré, L. B. et al. Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 14, 991–1004 (2020). Review.

    Google Scholar 

  4. Viana, J. H. Statistics of embryo production and transfer in domestic farm animals. Embryo Tecnology Newsl. 40, 22–40 (2022).

    Google Scholar 

  5. Stroebech, L. et al. In vitro production of bovine embryos: revisiting oocyte development and application of systems biology. Anim. Reprod. 12, 465–472 (2015).

    Google Scholar 

  6. Hyttel, P., Xu, K. P., Smith, S. & Greve, T. Ultrastructure of in-vitro oocyte maturation in cattle. J. Reprod. Fertil. 78, 615–625 (1986).

    Google Scholar 

  7. Sirard, M. A. & Blondin, P. Oocyte maturation and IVF in cattle. Anim. Reprod. Sci. 42, 417–426 (1996).

    Google Scholar 

  8. Meirelles, F. V. et al. Genome activation and developmental block in bovine embryos. Anim. Reprod. Sci. 82–83, 13–20 (2004).

    Google Scholar 

  9. Sutton, M. L., Gilchrist, R. B. & Thompson, J. G. Effect of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update. 9, 35–48 (2003).

    Google Scholar 

  10. Han, C. et al. Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab. Chip. 10, 2848–2854 (2010).

    Google Scholar 

  11. Heo, Y. S., Cabrera, L. M., Bormann, C. L., Smith, G. D. & Takayama, S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab. Chip. 12, 2240–2246 (2012).

    Google Scholar 

  12. McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S. M. & Speake, B. K. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact Zona pellucida. J. Reprod. Fertil. 118, 163–170 (2000).

    Google Scholar 

  13. Amstislavsky, S., Mokrousova, V., Brusentsev, E., Okotrub, K. & Comizzoli, P. Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: A review. Biopreserv Biobank. 17, 76–83 (2019).

    Google Scholar 

  14. Jin, J. X., Lee, S., Taweechaipaisankul, A., Kim, G. A. & Lee, B. C. Melatonin regulates lipid metabolism in Porcine oocytes. J. Pineal Res. 62, 1–10 (2017).

    Google Scholar 

  15. Oliveira, C. S., Feuchard, V. L., da, S. & de Marques, S. C. Saraiva, N. Z. Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. Zygote 30, 258–266 (2022).

    Google Scholar 

  16. Xu, X. et al. Effects of β-nicotinamide mononucleotide, berberine, and cordycepin on lipid droplet content and developmental ability of vitrified bovine oocytes.. Antioxidants 12, 1–18 (2023).

    Google Scholar 

  17. McKeegan, P. J. & Sturmey, R. G. The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 59–67 (2011).

    Google Scholar 

  18. Leroy, J. L. M. R. et al. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495 (2005).

    Google Scholar 

  19. Oskouei, B. S., Zargari, S., Shahabi, P., Novin, M. G. & Pashaiasl, M. Design and microfabrication of an on-chip oocyte maturation system for reduction of apoptosis. Cell. J. 23, 32–39 (2021).

    Google Scholar 

  20. Oskouei, S. et al. Evaluation of mouse oocyte in vitro maturation developmental competency in dynamic culture systems by design and construction of a lab on a chip device and its comparison with conventional culture system. Cell. J. 18, 205–213 (2016).

    Google Scholar 

  21. Sequeira, R. C., Criswell, T., Atala, A. & Yoo, J. J. Microfluidic systems for assisted reproductive technologies: advantages and potential applications. Tissue Eng. Regen Med. 17, 787–800 (2020).

    Google Scholar 

  22. Wu, T., Wu, Y., Yan, J., Zhang, J. & Wang, S. Microfluidic chip as a promising evaluation method in assisted reproduction: A systematic review. Bioeng. Transl Med. 9, 1–19 (2024).

    Google Scholar 

  23. Weng, L. et al. On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. Lab. Chip. 18, 3892–3902 (2018).

    Google Scholar 

  24. Xiao, S. et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 8, 1–13 (2017).

    Google Scholar 

  25. Ferraz, M. et al. Mimicking the bovine oviduct in a microfluidic device for advanced embryo in vitro culture systems. 21st Int. Conf. Miniaturized Syst. Chem. Life Sci. MicroTAS 2017. 1, 1047–1048 (2020).

    Google Scholar 

  26. Liu, J., Lee, G. Y., Biggers, J. D., Toth, T. L. & Toner, M. Low cryoprotectant concentration rapid vitrification of mouse oocytes and embryos. Cryobiology 98, 233–238 (2021).

    Google Scholar 

  27. Kashaninejad, N., Shiddiky, M. J. A. & Nguyen, N. T. Advances in Microfluidics-Based assisted reproductive technology: from sperm sorter to reproductive System-on-a-Chip. Adv. Biosyst. 2, 1–21 (2018).

    Google Scholar 

  28. Swain, J. E. & Smith, G. D. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum. Reprod. Update. 17, 541–557 (2011).

    Google Scholar 

  29. Stringfellow, D. A. & Givens, M. D. Manual of the International embryo transfer society (IETS) (IELTS, 1990).

  30. Luo, Z. Y. et al. Deformation of a single mouse oocyte in a constricted microfluidic channel. Microfluid Nanofluidics. 19, 883–890 (2015).

    Google Scholar 

  31. Lei, K. F., Chang, C. H. & Chen, M. J. Paper/PMMA hybrid 3D cell culture microfluidic platform for the study of cellular crosstalk. ACS Appl. Mater. Interfaces. 9, 13092–13101 (2017).

    Google Scholar 

  32. Song, K. Y., Zhang, H., Zhang, W. J. & Teixeira, A. Enhancement of the surface free energy of PDMS for reversible and leakage-free bonding of PDMS–PS microfluidic cell-culture systems. Microfluid Nanofluidics. 22, 1–9 (2018).

    Google Scholar 

  33. Vit, F. F. et al. A modular, reversible sealing, and reusable microfluidic device for drug screening. Anal. Chim. Acta. 1185, 1–13 (2021).

    Google Scholar 

  34. del Collado, M. et al. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci. Rep. 7, 1–13 (2017).

    Google Scholar 

  35. Aardema, H. et al. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid Storage1. Biol. Reprod. 88 (1–15), 164 (2013).

    Google Scholar 

  36. Aardema, H. et al. Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid Storage1. Biol. Reprod. 88, 164, 1–15 (2013).

    Google Scholar 

  37. Lolicato, F. et al. The cumulus cell layer protects the bovine maturing oocyte against fatty Acid-Induced Lipotoxicity1. Biol. Reprod. 92, 16, 1–16 (2015).

    Google Scholar 

  38. de Lima, C. B., Barbosa, G. Z., Ispada, J., dos Santos, E. C. & Milazzotto, M. P. Lipid availability during in vitro maturation alters oocyte lipid content and blastocyst development and metabolism. Reprod. Domest. Anim. 58, 920–928 (2023).

    Google Scholar 

  39. Luvoni, G. C. et al. Effect of gonadotropins during in vitro maturation of feline oocytes on oocyte–cumulus cells functional coupling and intracellular concentration of glutathione. Anim. Reprod. Sci. 96, 66–78 (2006).

    Google Scholar 

  40. Guerin, P., Mouatassim, S. & Ménézo, Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 7, 175–189 (2001).

    Google Scholar 

  41. Cetica, P. D., Pintos, L. N., Dalvit, G. C. & Beconi, M. T. Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life. 51, 57–64 (2001).

    Google Scholar 

  42. Sun, J. et al. Bioengineering high-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci Adv vol. 8 (2022). https://www.science.org

  43. Nardini Cecchino, G. et al. Mitochondria their relevance during oocyte ageing. Ageing Res. Rev. 70, 101378 (2021).

    Google Scholar 

  44. Harvey, A. J. Reproduction review Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. (2019). https://doi.org/10.1530/REP doi:10.1530/REP.

  45. Van Soom, A., Ysebaert, M. T. & De Kruif, A. Relationship between timing of development, Morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56 (1997).

    Google Scholar 

  46. Ochota, M., Wojtasik, B. & Nizański, W. Total cell number and its allocation to trophectoderm and inner cell mass in in vitro obtained cats’ blastocysts. Reprod. Domest. Anim. 51, 339–345 (2016).

    Google Scholar 

  47. Vit, F. F., Wu, Y. T., Fujiwara, E., Carvalho, H. F. & la Torre, L. G. de. Microfluidic chip for synergic drugs assay in 3D breast cancer cell. Microfluid Nanofluidics. 28, 1–16 (2024).

    Google Scholar 

  48. Madadi, M., Madadi, A., Zareifar, R. & Nikfarjam, A. A simple solvent-assisted method for thermal bonding of large-surface, multilayer PMMA microfluidic devices. Sens. Actuators Phys. 349, 114077 (2023).

    Google Scholar 

Download references