CRISPR-free RNA base editing mediated PTC-readthrough restores hearing in mice with Otof nonsense mutation

crispr-free-rna-base-editing-mediated-ptc-readthrough-restores-hearing-in-mice-with-otof-nonsense-mutation
CRISPR-free RNA base editing mediated PTC-readthrough restores hearing in mice with Otof nonsense mutation

Data availability

The sequence data generated in this study have been deposited in the NCBI Gene Expression Omnibus and Genome Sequence Archive, under accession code GSE262204, GSE262205, GSE262206, PRJCA049346, and PRJCA049089. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository with the dataset identifier PXD070139Source data are provided with this paper.

References

  1. Mason, J. A. & Herrmann, K. R. Universal infant hearing screening by automated auditory brainstem response measurement. Pediatrics 101, 221–228 (1998).

    Google Scholar 

  2. Kral, A. & O’Donoghue, G. Profound deafness in childhood. N. Engl. J. Med. 363, 1438–1450 (2010).

    Google Scholar 

  3. Wilson, B. S., Tucci, D. L., Merson, M. H. & O’Donoghue, G. M. Global hearing health care: new findings and perspectives. Lancet 390, 2503–2515 (2017).

    Google Scholar 

  4. Liang, Q. & Mason, B. Enter the dragon – China’s journey to the hearing world. Cochlear Implant. Int. 14, S26–S31 (2013).

    Google Scholar 

  5. Omichi, R., Shibata, S., Morton, C. & Smith, R. Gene therapy for hearing loss. Hum. Mol. Genet. 28, R65–R79 (2019).

    Google Scholar 

  6. Morton, C. & Nance, W. Newborn hearing screening–a silent revolution. N. Engl. J. Med. 354, 2151–2164 (2006).

    Google Scholar 

  7. Shearer, A. E. et al. Advancing genetic testing for deafness with genomic technology. J. Med. Genet. 50, 627–634 (2013).

    Google Scholar 

  8. McDermott, H. Music perception with cochlear implants: a review. Trends Amplif. 8, 49–82 (2004).

    Google Scholar 

  9. Jiam, N. T., Caldwell, M. T. & Limb, C. J. What does music sound like for a cochlear implant user? Otol. Neurotol. 38, e240–e247 (2017).

    Google Scholar 

  10. Limb, C. J. & Roy, A. T. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear. Res. 308, 13–26 (2014).

    Google Scholar 

  11. Meister, H., Walger, M., Lang-Roth, R. & Muller, V. Voice fundamental frequency differences and speech recognition with noise and speech maskers in cochlear implant recipients. J. Acoust. Soc. Am. 147, EL19 (2020).

    Google Scholar 

  12. Ford, C. L. et al. The natural history, clinical outcomes, and genotype–phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Hum. Genet. 142, 1429–1449 (2023).

    Google Scholar 

  13. Santarelli, R., del Castillo, I., Cama, E., Scimemi, P. & Starr, A. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations. Hear. Res. 330, 200–212 (2015).

    Google Scholar 

  14. Lv, J. et al. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. Lancet 403, 2317–2325 (2024).

    Google Scholar 

  15. Wang, D., Tai, P. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Google Scholar 

  16. Riedmayr, L. M. et al. mRNA trans-splicing dual AAV vectors for (epi)genome editing and gene therapy. Nat. Commun. 14, 6578 (2023).

    Google Scholar 

  17. Qi, J. et al. Preclinical efficacy and safety evaluation of AAV-OTOF in DFNB9 mouse model and nonhuman primate. Adv. Sci. 11, e2306201 (2023).

    Google Scholar 

  18. Akil, O. et al. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc. Natl. Acad. Sci. USA 116, 4496–4501 (2019).

    Google Scholar 

  19. Ertl, H. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 13, 975803 (2022).

    Google Scholar 

  20. Pupo, A. et al. AAV vectors: the Rubik’s cube of human gene therapy. Mol. Ther. 30, 3515–3541 (2022).

    Google Scholar 

  21. Zhang, L. et al. Preclinical evaluation of the efficacy and safety of AAV1-hOTOF in mice and nonhuman primates. Mol. Ther. Methods Clin. Dev. 31, 101154 (2023).

    Google Scholar 

  22. Pfeiffer, L. S. & Stafforst, T. Precision RNA base editing with engineered and endogenous effectors. Nat. Biotechnol. 41, 1526–1542 (2023).

    Google Scholar 

  23. Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Google Scholar 

  24. Lenharo, M. Move over, CRISPR: RNA-editing therapies pick up steam. Nature 626, 933–934 (2024).

    Google Scholar 

  25. Song, J., Zhuang, Y. & Yi, C. Programmable RNA base editing via targeted modifications. Nat. Chem. Biol. 20, 277–290 (2024).

    Google Scholar 

  26. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Google Scholar 

  27. Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651.e639 (2023).

    Google Scholar 

  28. Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155.e139 (2023).

    Google Scholar 

  29. Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat. Biotechnol. 43, 114–123 (2025).

    Google Scholar 

  30. Luo, N., Huang, Q., Zhang, M. & Yi, C. Functions and therapeutic applications of pseudouridylation. Nat. Rev. Mol. Cell Biol. 26, 691–705 (2025).

    Google Scholar 

  31. Li, Y. et al. Targeted next-generation sequencing of deaf patients from Southwestern China. Mol. Genet. Genom. Med. 9, e1660 (2021).

    Google Scholar 

  32. Tang, F. Z. et al. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder. BMC Med. Genet. 18, 35 (2017).

    Google Scholar 

  33. Choi, B. Y. et al. Identities and frequencies of mutations of the otoferlin gene (OTOF) causing DFNB9 deafness in Pakistan. Clin. Genet. 75, 237–243 (2009).

    Google Scholar 

  34. Barbara, V., Aboulfazl, R. & Ellen, R. The many faces of DFNB9: relating OTOF variants to hearing impairment. Genes 11, 1411 (2020).

  35. Zhang, M. et al. Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat. Chem. Biol. 19, 1185–1195 (2023).

    Google Scholar 

  36. Tan, F. Z. et al. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat. Commun. 10, 3733 (2019).

  37. Hakizimana, P. The summating potential polarity encodes the ear health condition. Cell. Mol. Life Sci. 80, 163 (2023).

    Google Scholar 

  38. Longenecker, R. J., Alghamdi, F., Rosen, M. J. & Galazyuk, A. V. Prepulse inhibition of the acoustic startle reflex vs. auditory brainstem response for hearing assessment. Hear. Res. 339, 80–93 (2016).

    Google Scholar 

  39. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).

    Google Scholar 

  40. Kashtan, C. Alport syndrome: achieving early diagnosis and treatment. Am. J. Kidney Dis. 77, 272–279 (2021).

    Google Scholar 

  41. Li, S. et al. A comprehensive genotype-phenotype evaluation of eight Chinese probands with Waardenburg syndrome. BMC Med. Genomics 15, 230 (2022).

    Google Scholar 

  42. Sun, Y., Wang, T., Zhang, N., Zhang, P. & Li, Y. Clinical features and genetic analysis of Dandy-Walker syndrome. BMC Pregnancy Childbirth 23, 40 (2023).

    Google Scholar 

  43. Al-Moyed, H. et al. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol. Med. 11, e9396 (2018).

    Google Scholar 

  44. Tang, H. et al. Hearing of Otof-deficient mice restored by trans-splicing of N- and C-terminal otoferlin. Hum. Genet. 142, 289–304 (2022).

    Google Scholar 

  45. Iwasa, Y. et al. Detailed clinical features and genotype-phenotype correlation in an OTOF-related hearing loss cohort in Japan. Hum. Genet. 141, 865–875 (2022).

    Google Scholar 

  46. Wu, J. et al. Molecular diagnose of a large hearing loss population from China by targeted genome sequencing. J. Hum. Genet. 67, 643–649 (2022).

    Google Scholar 

  47. Mingozzi, F. & High, K. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat. Rev. Genet. 12, 341–355 (2011).

    Google Scholar 

  48. Meaghan, V. A. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 24, 930–940 (2021).

  49. Richard S., F. & Kenneth H., F. Maybe too much of a good thing in gene therapy. Nat. Neurosci. 24 901–902 (2021).

  50. Gao, X. et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553, 217–221 (2017).

    Google Scholar 

  51. Xue, Y. et al. Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol. Ther. 30, 105–118 (2022).

    Google Scholar 

  52. Cui, C. et al. A base editor for the long-term restoration of auditory function in mice with recessive profound deafness. Nat. Biomed. Eng. 9, 40–56 (2025).

    Google Scholar 

  53. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Google Scholar 

  54. Xue, Y. et al. RNA base editing therapy cures hearing loss induced by OTOF gene mutation. Mol. Ther. 31, 3520–3530 (2023).

    Google Scholar 

  55. Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11, e0163962 (2016).

    Google Scholar 

  56. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).

    Google Scholar 

  57. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  58. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

  59. Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Google Scholar 

  60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Google Scholar 

  61. Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    Google Scholar 

  62. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  63. Mao, Y., Jia, L., Dong, L., Shu, X. E. & Qian, S. B. Start codon-associated ribosomal frameshifting mediates nutrient stress adaptation. Nat. Struct. Mol. Biol. 30, 1816–1825 (2023).

    Google Scholar 

  64. Lauria, F. et al. riboWaltz: Optimization of ribosome P-site positioning in ribosome profiling data. PLoS Comput. Biol. 14, e1006169 (2018).

    Google Scholar 

  65. Wangen, J. R. & Green, R. Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. Elife 9, e52611 (2020).

  66. Guo, J. Y. et al. Canalostomy as a surgical approach to local drug delivery into the inner ears of adult and neonatal mice. J. Vis. Exp. 135, 57351 (2018).

    Google Scholar 

Download references

Acknowledgements

We thank National Center for Protein Sciences at Peking University in Beijing, China, for assistance with the 4150 TapeStation System and mass spectrometry; D. Liu and Q. Zhang for their help with sample pretreatment and data analysis. We also thank the Center for Quantitative Biology at Peking University for assistance with the ImageXpress Micro 4 high-content imaging system and X. Li for her help; We thank High Performance Computing Platform of the Center for Life Science for assistance with the analysis. We thank all members of the Auditory laboratory for their many helpful discussions and support throughout this project. This work was supported by the Natural Science Foundation of China (no. 22425071 to C.Y., no. 81770997 to K.L., no. 82460223 to X.S., and no. 22407007 to H.S.), the Technology Plan Project of Beijing Tongzhou District (no. WS2024056 to K.L.), the Natural Key R&D Program of China (no. 2023YFC3402200 to C.Y.), and Beijing Municipal Science & Technology Commission (Z231100002723005 to C.Y.).

Author information

Author notes

  1. These authors contributed equally: Hanxiao Sun, Qi Teng, Wenqing Liu, Rui Guo, Menghua Li.

Authors and Affiliations

  1. The National Key Laboratory of Gene Function Studies and Manipulation, School of Life Sciences, Peking University, Beijing, China

    Hanxiao Sun, Qiang Huang, Nan Luo, Jinghui Song & Chengqi Yi

  2. Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China

    Qi Teng, Rui Guo, Menghua Li, Wei Xiong, Qianru Yu, Yang Li, Shusheng Gong & Ke Liu

  3. School of Life Sciences, Tsinghua University, Beijing, China

    Wenqing Liu

  4. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China

    Wenqing Liu

  5. Beijing Clinical Research Institute, Beijing, China

    Yang Li & Ke Liu

  6. Clinical Center for Hearing Loss, Capital Medical University, Beijing, China

    Shusheng Gong & Ke Liu

  7. Academician Workstation of Hainan University (Sanya), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China

    Xi Shi

  8. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China

    Chengqi Yi

  9. Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China

    Chengqi Yi

  10. Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China

    Chengqi Yi

Authors

  1. Hanxiao Sun
  2. Qi Teng
  3. Wenqing Liu
  4. Rui Guo
  5. Menghua Li
  6. Wei Xiong
  7. Qiang Huang
  8. Qianru Yu
  9. Nan Luo
  10. Yang Li
  11. Jinghui Song
  12. Shusheng Gong
  13. Xi Shi
  14. Chengqi Yi
  15. Ke Liu

Contributions

K.L., C.Y., and X.S. proposed the conception of the project. H.S., W.L., Q.H., N.L., J.S., and C.Y. designed the RNA editing tools. Q.T., R.G., M.L., W.X., Q.Y., Y.L., S.G., X.S., and K.L. designed and conducted animal testing. H.S., Q.T., W.L., R.G. and M.L. collected the data and performed data analysis. H.S., Q.T., W.L., R.G. and M.L. developed photographs and schematic diagrams in the manuscript. H.S., Q.T., M.L., X.S., C.Y., and K.L. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Xi Shi, Chengqi Yi or Ke Liu.

Ethics declarations

Competing interests

A patent application has been filed by Peking University for the RESTART technology disclosed in this publication; C.Y. is the inventor on the patent application. The Otof c.1315 C > T (p.R439*) mice used in this article have obtained a Chinese patent (ZL202110894148.4); K.L. and X.S. are the inventors on this patent application. The other authors declare that they have no competing interests.

Peer review

Peer review information

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Teng, Q., Liu, W. et al. CRISPR-free RNA base editing mediated PTC-readthrough restores hearing in mice with Otof nonsense mutation. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67112-w