References
-
Zhang, Y. et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 8, 8720 (2018).
-
Bian, W. et al. Review of functionalized nanomaterials for photothermal therapy of cancers. ACS Appl. Nano Mater. 4, 11353–11385 (2021).
-
Zou, L. et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6, 762–772 (2016).
-
Zhao, L. et al. Recent advances in selective photothermal therapy of tumor. J. Nanobiotechnol. 19, 335 (2021).
-
Oudjedi, F. & Kirk, A. G. Near-infrared nanoparticle-mediated photothermal cancer therapy: A comprehensive review of advances in monitoring and controlling thermal effects for effective cancer treatment. Nano Sel. https://doi.org/10.1002/nano.202400107 (2024).
-
Sahu, A., Ingle, J., Panigrahi, R. & Basu, S. Small molecule-mediated photothermal therapy induces apoptosis in cancer cells. ChemMedChem 20, e202500151 (2025).
-
Gong, Y. et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer 18, 100 (2019).
-
Xu, R. et al. Anti-tumor strategies of photothermal therapy combined with other therapies using nanoplatforms. Pharmaceutics 17, 306 (2025).
-
Cai, Y. et al. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct. Target. Ther. 10, 115 (2025).
-
Duan, S. et al. Nanomaterials for photothermal cancer therapy. RSC Adv. 13, 14443–14460 (2023).
-
Shen, Y., Zou, Y., Bie, B., Dong, C. & Lv, Y. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Acta Biomater. 157, 578–592 (2023).
-
Thümmler, J. F. et al. Photo-thermoresponsive polypyrrole-crosslinked single-chain nanoparticles for photothermal therapy. Commun. Chem. 8, 124 (2025).
-
Tian, S., He, J., Lyu, D., Li, S. & Xu, Q.-H. Aggregation enhanced photoactivity of photosensitizer conjugated metal nanoparticles for multimodal imaging and synergistic phototherapy below skin tolerance threshold. Nano Today 45, 101534 (2022).
-
Lin, P. et al. Tumor customized 2D supramolecular nanodiscs for ultralong tumor retention and precise photothermal therapy of highly heterogeneous cancers. Small 18, e2200179 (2022).
-
Lee, E. S. et al. Janus gold nanodiscs with an asymmetrically positioned polyaniline nano-urchin for photothermal therapy and multimodal imaging in the second near-infrared window. ACS Appl. Mater. Interfaces 17, 31799–31809 (2025).
-
Vines, J. B., Yoon, J.-H., Ryu, N.-E., Lim, D.-J. & Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 7, 167 (2019).
-
Hossain, A. et al. Advances and significances of gold nanoparticles in cancer treatment: A comprehensive review. Results Chem. 8, 101559 (2024).
-
Kim, D., Paik, J. & Kim, H. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy. Sci. Rep. 13, 12135 (2023).
-
Ji, Y. & Wang, C. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells. Front. Bioeng. Biotechnol. 11, 1130523 (2023).
-
Zhao, S., Yu, X., Qian, Y., Chen, W. & Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics 10, 6278–6309 (2020).
-
Lee, E. S. et al. Au/Fe/Au trilayer nanodiscs as theranostic agents for magnet-guided photothermal, chemodynamic therapy and ferroptosis with photoacoustic imaging. Chem. Eng. J. 505, 159137 (2025).
-
Zhang, Y., Yang, H., Yu, Y. & Zhang, Y. Application of nanomaterials in proteomics-driven precision medicine. Theranostics 12, 2674–2686 (2022).
-
Machuca, A. et al. Advancing rhodium nanoparticle-based photodynamic cancer therapy: Quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J. Mater. Chem. B 12, 12073–12086 (2024).
-
Zhang, Y. et al. Comparative proteomic analysis of liver tissues and serum in db/db mice. Int. J. Mol. Sci. 23, 9687 (2022).
-
Crowgey, E. L., Wyffels, J. T., Osborn, P. M., Wood, T. T. & Edsberg, L. E. A Systems biology approach for studying heterotopic ossification: Proteomic analysis of clinical serum and tissue samples. Genom., Proteom. Bioinform. 16, 212–220 (2018).
-
Sultana, N., Pathak, R., Samanta, S. & Sarma, N. S. A comprehensive analysis of photothermal therapy (PTT) and photodynamic therapy (PDT) for the treatment of cancer. Process Biochem. 148, 17–31 (2025).
-
Lee, S. Y., Choi, J. W., Lee, T. G., Heo, M. B. & Son, J. G. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. Nanoscale Adv. 6, 5585–5597 (2024).
-
He, Y. et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 6, 425 (2021).
-
Guo, N. et al. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol. Res. 206, 107300 (2024).
-
Asselin-Labat, M.-L., Ruhland, M. K. & Ferris, S. T. Editorial: Antigen presentation in cancer immune responses. Front. Immunol. 16, 1558249 (2025).
-
Prete, A. D. et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 20, 432–447 (2023).
-
Karihtala, P. et al. Serum protein profiling reveals an inflammation signature as a predictor of early breast cancer survival. Breast Cancer Res. 26, 61 (2024).
-
Santaolalla, A. et al. Association between serum markers of the humoral immune system and inflammation in the Swedish AMORIS study. BMC Immunol. 22, 61 (2021).
-
Freeley, S., Kemper, C. & Friec, G. L. The, “ins and outs” of complement-driven immune responses. Immunol. Rev. 274, 16–32 (2016).
-
Phillips, M. C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020–24029 (2014).
-
Foit, L., Giles, F. J., Gordon, L. I. & Thaxton, C. S. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev. Anticancer Ther. 15, 27–34 (2015).
-
Chang, C. L. Lipoprotein lipase. Curr. Opin. Clin. Nutr. Metab. Care 22, 111–115 (2019).
-
Liu, Y. et al. Stress and cancer: The mechanisms of immune dysregulation and management. Front. Immunol. 13, 1032294 (2022).
-
Zhang, R., Liu, Q., Li, T., Liao, Q. & Zhao, Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int. 19, 300 (2019).
-
Afshar-Kharghan, V. Complement and clot. Blood 129, 2214–2215 (2017).
-
Ajona, D., Cragg, M. S. & Pio, R. The complement system in clinical oncology: Applications, limitations and challenges. Semin. Immunol. 77, 101921 (2025).
-
Li, J. et al. Ferroptosis: Past, present and future. Cell Death Dis. 11, 88 (2020).
-
Bakhautdin, B., Bakhautdin, E. G. & Fox, P. L. Ceruloplasmin has two nearly identical sites that bind myeloperoxidase. Biochem. Biophys. Res. Commun. 453, 722–727 (2014).
-
Cherukuri, S., Tripoulas, N. A., Nurko, S. & Fox, P. L. Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice. Blood Cells, Mol., Dis. 33, 346–355 (2004).
-
Shang, Y. et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell. Signal. 72, 109633 (2020).
-
Choi, Y. & Jung, K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp. Mol. Med. 55, 2308–2319 (2023).
-
Khouzam, R. A. et al. Tumor hypoxia regulates immune escape/invasion: influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front. Immunol. 11, 613114 (2021).
-
Antoniak, S. The coagulation system in host defense. Res. Pr. Thromb. Haemost. 2, e12109 (2018).
