Integrated tissue and serum proteomics on magnet-guided photothermal therapy using Au/Fe/Au trilayer nanodiscs

integrated-tissue-and-serum-proteomics-on-magnet-guided-photothermal-therapy-using-au/fe/au-trilayer-nanodiscs
Integrated tissue and serum proteomics on magnet-guided photothermal therapy using Au/Fe/Au trilayer nanodiscs

References

  1. Zhang, Y. et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci. Rep. 8, 8720 (2018).

    Google Scholar 

  2. Bian, W. et al. Review of functionalized nanomaterials for photothermal therapy of cancers. ACS Appl. Nano Mater. 4, 11353–11385 (2021).

    Google Scholar 

  3. Zou, L. et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6, 762–772 (2016).

    Google Scholar 

  4. Zhao, L. et al. Recent advances in selective photothermal therapy of tumor. J. Nanobiotechnol. 19, 335 (2021).

    Google Scholar 

  5. Oudjedi, F. & Kirk, A. G. Near-infrared nanoparticle-mediated photothermal cancer therapy: A comprehensive review of advances in monitoring and controlling thermal effects for effective cancer treatment. Nano Sel. https://doi.org/10.1002/nano.202400107 (2024).

    Google Scholar 

  6. Sahu, A., Ingle, J., Panigrahi, R. & Basu, S. Small molecule-mediated photothermal therapy induces apoptosis in cancer cells. ChemMedChem 20, e202500151 (2025).

    Google Scholar 

  7. Gong, Y. et al. The role of necroptosis in cancer biology and therapy. Mol. Cancer 18, 100 (2019).

    Google Scholar 

  8. Xu, R. et al. Anti-tumor strategies of photothermal therapy combined with other therapies using nanoplatforms. Pharmaceutics 17, 306 (2025).

    Google Scholar 

  9. Cai, Y. et al. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct. Target. Ther. 10, 115 (2025).

    Google Scholar 

  10. Duan, S. et al. Nanomaterials for photothermal cancer therapy. RSC Adv. 13, 14443–14460 (2023).

    Google Scholar 

  11. Shen, Y., Zou, Y., Bie, B., Dong, C. & Lv, Y. Combining dual-targeted liquid metal nanoparticles with autophagy activation and mild photothermal therapy to treat metastatic breast cancer and inhibit bone destruction. Acta Biomater. 157, 578–592 (2023).

    Google Scholar 

  12. Thümmler, J. F. et al. Photo-thermoresponsive polypyrrole-crosslinked single-chain nanoparticles for photothermal therapy. Commun. Chem. 8, 124 (2025).

    Google Scholar 

  13. Tian, S., He, J., Lyu, D., Li, S. & Xu, Q.-H. Aggregation enhanced photoactivity of photosensitizer conjugated metal nanoparticles for multimodal imaging and synergistic phototherapy below skin tolerance threshold. Nano Today 45, 101534 (2022).

    Google Scholar 

  14. Lin, P. et al. Tumor customized 2D supramolecular nanodiscs for ultralong tumor retention and precise photothermal therapy of highly heterogeneous cancers. Small 18, e2200179 (2022).

    Google Scholar 

  15. Lee, E. S. et al. Janus gold nanodiscs with an asymmetrically positioned polyaniline nano-urchin for photothermal therapy and multimodal imaging in the second near-infrared window. ACS Appl. Mater. Interfaces 17, 31799–31809 (2025).

    Google Scholar 

  16. Vines, J. B., Yoon, J.-H., Ryu, N.-E., Lim, D.-J. & Park, H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 7, 167 (2019).

    Google Scholar 

  17. Hossain, A. et al. Advances and significances of gold nanoparticles in cancer treatment: A comprehensive review. Results Chem. 8, 101559 (2024).

    Google Scholar 

  18. Kim, D., Paik, J. & Kim, H. Effect of gold nanoparticles distribution radius on photothermal therapy efficacy. Sci. Rep. 13, 12135 (2023).

    Google Scholar 

  19. Ji, Y. & Wang, C. Magnetic iron oxide nanoparticle-loaded hydrogels for photothermal therapy of cancer cells. Front. Bioeng. Biotechnol. 11, 1130523 (2023).

    Google Scholar 

  20. Zhao, S., Yu, X., Qian, Y., Chen, W. & Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics 10, 6278–6309 (2020).

    Google Scholar 

  21. Lee, E. S. et al. Au/Fe/Au trilayer nanodiscs as theranostic agents for magnet-guided photothermal, chemodynamic therapy and ferroptosis with photoacoustic imaging. Chem. Eng. J. 505, 159137 (2025).

    Google Scholar 

  22. Zhang, Y., Yang, H., Yu, Y. & Zhang, Y. Application of nanomaterials in proteomics-driven precision medicine. Theranostics 12, 2674–2686 (2022).

    Google Scholar 

  23. Machuca, A. et al. Advancing rhodium nanoparticle-based photodynamic cancer therapy: Quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J. Mater. Chem. B 12, 12073–12086 (2024).

    Google Scholar 

  24. Zhang, Y. et al. Comparative proteomic analysis of liver tissues and serum in db/db mice. Int. J. Mol. Sci. 23, 9687 (2022).

    Google Scholar 

  25. Crowgey, E. L., Wyffels, J. T., Osborn, P. M., Wood, T. T. & Edsberg, L. E. A Systems biology approach for studying heterotopic ossification: Proteomic analysis of clinical serum and tissue samples. Genom., Proteom. Bioinform. 16, 212–220 (2018).

    Google Scholar 

  26. Sultana, N., Pathak, R., Samanta, S. & Sarma, N. S. A comprehensive analysis of photothermal therapy (PTT) and photodynamic therapy (PDT) for the treatment of cancer. Process Biochem. 148, 17–31 (2025).

    Google Scholar 

  27. Lee, S. Y., Choi, J. W., Lee, T. G., Heo, M. B. & Son, J. G. Influence of albumin concentration on surface characteristics and cellular responses in the pre-incubation of multi-walled carbon nanotubes. Nanoscale Adv. 6, 5585–5597 (2024).

    Google Scholar 

  28. He, Y. et al. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 6, 425 (2021).

    Google Scholar 

  29. Guo, N. et al. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol. Res. 206, 107300 (2024).

    Google Scholar 

  30. Asselin-Labat, M.-L., Ruhland, M. K. & Ferris, S. T. Editorial: Antigen presentation in cancer immune responses. Front. Immunol. 16, 1558249 (2025).

    Google Scholar 

  31. Prete, A. D. et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol. 20, 432–447 (2023).

    Google Scholar 

  32. Karihtala, P. et al. Serum protein profiling reveals an inflammation signature as a predictor of early breast cancer survival. Breast Cancer Res. 26, 61 (2024).

    Google Scholar 

  33. Santaolalla, A. et al. Association between serum markers of the humoral immune system and inflammation in the Swedish AMORIS study. BMC Immunol. 22, 61 (2021).

    Google Scholar 

  34. Freeley, S., Kemper, C. & Friec, G. L. The, “ins and outs” of complement-driven immune responses. Immunol. Rev. 274, 16–32 (2016).

    Google Scholar 

  35. Phillips, M. C. Molecular mechanisms of cellular cholesterol efflux. J. Biol. Chem. 289, 24020–24029 (2014).

    Google Scholar 

  36. Foit, L., Giles, F. J., Gordon, L. I. & Thaxton, C. S. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy. Expert Rev. Anticancer Ther. 15, 27–34 (2015).

    Google Scholar 

  37. Chang, C. L. Lipoprotein lipase. Curr. Opin. Clin. Nutr. Metab. Care 22, 111–115 (2019).

    Google Scholar 

  38. Liu, Y. et al. Stress and cancer: The mechanisms of immune dysregulation and management. Front. Immunol. 13, 1032294 (2022).

    Google Scholar 

  39. Zhang, R., Liu, Q., Li, T., Liao, Q. & Zhao, Y. Role of the complement system in the tumor microenvironment. Cancer Cell Int. 19, 300 (2019).

    Google Scholar 

  40. Afshar-Kharghan, V. Complement and clot. Blood 129, 2214–2215 (2017).

    Google Scholar 

  41. Ajona, D., Cragg, M. S. & Pio, R. The complement system in clinical oncology: Applications, limitations and challenges. Semin. Immunol. 77, 101921 (2025).

    Google Scholar 

  42. Li, J. et al. Ferroptosis: Past, present and future. Cell Death Dis. 11, 88 (2020).

    Google Scholar 

  43. Bakhautdin, B., Bakhautdin, E. G. & Fox, P. L. Ceruloplasmin has two nearly identical sites that bind myeloperoxidase. Biochem. Biophys. Res. Commun. 453, 722–727 (2014).

    Google Scholar 

  44. Cherukuri, S., Tripoulas, N. A., Nurko, S. & Fox, P. L. Anemia and impaired stress-induced erythropoiesis in aceruloplasminemic mice. Blood Cells, Mol., Dis. 33, 346–355 (2004).

    Google Scholar 

  45. Shang, Y. et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells. Cell. Signal. 72, 109633 (2020).

    Google Scholar 

  46. Choi, Y. & Jung, K. Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Exp. Mol. Med. 55, 2308–2319 (2023).

    Google Scholar 

  47. Khouzam, R. A. et al. Tumor hypoxia regulates immune escape/invasion: influence on angiogenesis and potential impact of hypoxic biomarkers on cancer therapies. Front. Immunol. 11, 613114 (2021).

    Google Scholar 

  48. Antoniak, S. The coagulation system in host defense. Res. Pr. Thromb. Haemost. 2, e12109 (2018).

    Google Scholar 

Download references