References
-
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
-
Lopes Novo, C. & Rugg-Gunn, P. J. Chromatin organization in pluripotent cells: emerging approaches to study and disrupt function. Brief. Funct. Genom. 15, 305–314 (2016).
-
Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).
-
Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).
-
Selvaraj, S., R Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 31, 1111–1118 (2013).
-
Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).
-
Tavares-Cadete, F., Norouzi, D., Dekker, B., Liu, Y. & Dekker, J. Multi-contact 3C reveals that the human genome during interphase is largely not entangled. Nat. Struct. Mol. Biol. 27, 1105–1114 (2020).
-
Deshpande, A. S. et al. Identifying synergistic high-order 3D chromatin conformations from genome-scale nanopore concatemer sequencing. Nat. Biotechnol. 40, 1488–1499 (2022).
-
Zhong, J.-Y. et al. High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding. Nat. Commun. 14, 1250 (2023).
-
Hildebrand, E. M. et al. Mitotic chromosomes are self-entangled and disentangle through a topoisomerase-II-dependent two-stage exit from mitosis. Mol. Cell 84, 1422–1441.e14 (2024).
-
Bein, B. et al. Long-read sequencing and genome assembly of natural history collection samples and challenging specimens. Genome Biol. 26, 25 (2025).
-
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
-
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
-
Kronenberg, Z. et al. The Platinum Pedigree: a long-read benchmark for genetic variants. Nat. Methods 22, 1669–1676 (2025).
-
Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).
-
Martin, M., Ebert, P. & Marschall, T. Read-based phasing and analysis of phased variants with WhatsHap. Methods Mol. Biol. 2590, 127–138 (2023).
-
Shin, H. et al. TopDom: an efficient and deterministic method for identifying topological domains in genomes. Nucleic Acids Res. 44, e70 (2016).
-
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
-
Zufferey, M., Tavernari, D., Oricchio, E. & Ciriello, G. Comparison of computational methods for the identification of topologically associating domains. Genome Biol. 19, 217 (2018).
-
Sharp, A. J. et al. Segmental duplications and copy-number variation in the human genome. Am. J. Hum. Genet. 77, 78–88 (2005).
-
Mefford, H. C. et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699 (2008).
-
Klopocki, E. et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am. J. Hum. Genet 80, 232–240 (2007).
-
Szalay, M.-F., Majchrzycka, B., Jerković, I., Cavalli, G. & Ibrahim, D. M. Evolution and function of chromatin domains across the tree of life. Nat. Struct. Mol. Biol. 31, 1824–1837 (2024).
-
Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).
-
Kingan, S. B. et al. A high-quality genome assembly from a single mosquito using PacBio sequencing. Genes 10, 62 (2019).
-
Lukyanchikova, V. et al. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat. Commun. 13, 1960 (2022).
-
Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods 21, 967–970 (2024).
-
Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
-
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).
-
Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).
-
Franz, G. Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In Sterile Insect Technique 427–451 (Springer-Verlag, 2006).
-
Papanicolaou, A. et al. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol. 17, 192 (2016).
-
Ramani, V. et al. Mapping 3D genome architecture through in situ DNase Hi-C. Nat. Protoc. 11, 2104–2121 (2016).
-
Hamley, J. C., Li, H., Denny, N., Downes, D. & Davies, J. O. J. Determining chromatin architecture with micro Capture-C. Nat. Protoc. 18, 1687–1711 (2023).
-
Li, H. & Durbin, R. Genome assembly in the telomere-to-telomere era. Nat. Rev. Genet 25, 658–670 (2024).
-
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
-
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
-
Open2C et al. Pairtools: from sequencing data to chromosome contacts. PLoS Comput Biol. 20, e1012164 (2024).
-
Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).
-
Baril, T., Galbraith, J. & Hayward, A. Earl Grey: a fully automated user-friendly transposable element annotation and analysis pipeline. Mol. Biol. Evol. 41, msae068 (2024).
-
Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. StainedGlass: interactive visualization of massive tandem repeat structures with identity heatmaps. Bioinformatics 38, 2049–2051 (2022).
-
Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 19, 125 (2018).
-
Sharakhova, M. V. et al. Genome mapping and characterization of the Anopheles gambiae heterochromatin. BMC Genom. 11, 459 (2010).
-
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
-
Olson, D. R. & Wheeler, T. J. ULTRA-effective labeling of tandem repeats in genomic sequence. Bioinform. Adv. 4, vbae149 (2024).
-
Krzywinski, J., Sangaré, D. & Besansky, N. J. Satellite DNA from the Y chromosome of the malaria vector Anopheles gambiae. Genetics 169, 185–196 (2005).
-
Sim, S. B. et al. Genome report: chromosome-scale genome assembly of the West Indian fruit fly Anastrepha obliqua (Diptera: Tephritidae). G3 14, jkae024 (2024).
-
Congrains, C. et al. Chromosome-scale genome of the polyphagous pest Anastrepha ludens (Diptera: Tephritidae) provides insights on sex chromosome evolution in Anastrepha. G3 14, jkae239 (2024).
-
Hansen, T. E. et al. Genome report: chromosome-scale genome assembly of the Olive fly Bactrocera oleae (Diptera: Tephritidae). G3 https://doi.org/10.1093/g3journal/jkaf235 (2025).
-
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. https://www.osti.gov/servlets/purl/1241166 (2014).
-
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).
-
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
-
Porubsky, D. et al. SVbyEye: a visual tool to characterize structural variation among whole-genome assemblies. Bioinformatics 41, btaf332 (2025).
-
Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).
-
RepeatMasker Home Page. https://www.repeatmasker.org/.
-
Altemose, N. et al. Complete genomic and epigenetic maps of human centromeres. Science 376, eabl4178 (2022).
-
Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e23 (2020).
-
Soto, D. C. et al. Human-specific gene expansions contribute to brain evolution. Cell https://doi.org/10.1016/j.cell.2025.06.037 (2025).
-
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
-
McGinty, S. P. et al. CiFi: accurate long-read chromosome conformation capture with low-input requirements. Zenodo https://doi.org/10.5281/zenodo.17526543 (2025).
-
Knight, P. A. & Ruiz, D. A fast algorithm for matrix balancing. IMA J. Numer. Anal. 33, 1029–1047 (2013).
