Synergistic antifungal and anti-aflatoxigenic effects of lactic acid bacteria and golden berry in a functional high-protein beverage

synergistic-antifungal-and-anti-aflatoxigenic-effects-of-lactic-acid-bacteria-and-golden-berry-in-a-functional-high-protein-beverage
Synergistic antifungal and anti-aflatoxigenic effects of lactic acid bacteria and golden berry in a functional high-protein beverage

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Artés-Hernández, F. et al. Phytochemical fortification in fruit and vegetable beverages with green technologies. Foods 10 https://doi.org/10.3390/foods10112534 (2021).

  2. Niyigaba, T., Liu, D. & Habimana, J. D. The Extraction, functionalities and applications of plant polysaccharides in fermented foods: A review. Foods. https://doi.org/10.3390/foods10123004 (2021).

    Google Scholar 

  3. Skryplonek, K., Dmytrów, I. & Mituniewicz-Małek, A. Probiotic fermented beverages based on acid Whey. J. Dairy Sci. 102 (9), 7773–7780. https://doi.org/10.3168/jds.2019-16385 (2019).

    Google Scholar 

  4. Souza, F. P. et al. The addition of xyloligoosaccharide in strawberry-flavored Whey beverage. LWT 109, 118–122. https://doi.org/10.1016/j.lwt.2019.03.093 (2019).

    Google Scholar 

  5. Badr, A. N. et al. Bioactive components of pomegranate oil and their influence on Mycotoxin secretion. Toxins 12 (12). https://doi.org/10.3390/toxins12120748 (2020).

  6. Loi, M. et al. Plant bioactive compounds in Pre- and postharvest management for aflatoxins reduction. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00243 (2020). 11.DOI.

    Google Scholar 

  7. Chain, E. et al. Panel o.C.i.t.F.,., Risk assessment of aflatoxins in food. EFSA Journal, 18(3): p. e06040. (2020). https://doi.org/10.2903/j.efsa.2020.6040

  8. Magnusson, J. & Schnürer, J. Lactobacillus coryniformis subsp.coryniformis strain Si3 produces a Broad-Spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol. 67 (1), 1–5. https://doi.org/10.1128/AEM.67.1.1-5.2001 (2001). .DOI.

    Google Scholar 

  9. Nasrollahzadeh, A. et al. Antifungal preservation of food by lactic acid bacteria. Foods 11 https://doi.org/10.3390/foods11030395 (2022).

  10. Hamad, G. M. et al. A review of recent innovative strategies for controlling Mycotoxins in foods. Food Control. 144, 109350. https://doi.org/10.1016/j.foodcont.2022.109350 (2023).

    Google Scholar 

  11. Abdel-Nasser, A. et al. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. Biotechnol. Rep. https://doi.org/10.1016/j.btre.2023.e00799 (2023). 38.DOI.

    Google Scholar 

  12. Wu, G. Functional amino acids in nutrition and health. Amino Acids. 45 (3), 407–411. https://doi.org/10.1007/s00726-013-1500-6 (2013).

    Google Scholar 

  13. Lallianrawna, S. et al. Determination of total phenolic content, total flavonoid content and total antioxidant capacity of ageratina adenophora (Spreng.) King. Sci. Vis. 13 (4), 149–156 (2013).

    Google Scholar 

  14. Afshar, P. et al. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 178, 50–58. https://doi.org/10.1016/j.toxicon.2020.02.007 (2020).

    Google Scholar 

  15. Liu, A. et al. Decontamination of aflatoxins by lactic acid bacteria. Curr. Microbiol. 77 (12), 3821–3830. https://doi.org/10.1007/s00284-020-02220-y (2020). DOI.

    Google Scholar 

  16. Sakr, E. A. E., Ahmed, H. A. E., Abo, F. A. A. & Saif Characterization of low-cost Glycolipoprotein biosurfactant produced by Lactobacillus plantarum 60 FHE isolated from cheese samples using food wastes through response surface methodology and its potential as antimicrobial, antiviral, and anticancer activities. Int. J. Biol. Macromol. 170, 94–106. https://doi.org/10.1016/j.ijbiomac.2020.12.140 (2021).

    Google Scholar 

  17. Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural chemicals, contaminants, drugs/edited by William Horwitz (Gaithersburg, 2010).

  18. Sun-Waterhouse, D., Zhou, J. & Wadhwa, S. S. Drinking yoghurts with berry polyphenols added before and after fermentation. Food Control. 32 (2), 450–460. https://doi.org/10.1016/j.foodcont.2013.01.011 (2013).

    Google Scholar 

  19. Ertan, K. et al. Total antioxidant capacity and phenolic content of pasteurized and UHT-treated cow milk samples marketed in Turkey. Akademik gıda Dergisi. 15 (2), 103–108. https://doi.org/10.24323/akademik-gida.333630 (2017).

    Google Scholar 

  20. Taroub, B. et al. Isolation of lactic acid bacteria from grape fruit: antifungal activities, probiotic properties, and in vitro detoxification of Ochratoxin A. Ann. Microbiol. 69 (1), 17–27. https://doi.org/10.1007/s13213-018-1359-6 (2019). .DOI.

    Google Scholar 

  21. Shehata, M. G. et al. Optimization, partial Purification, and characterization of bioactive peptides of Lactobacillus paracasei isolated from traditional Egyptian cheese. J. Food Qual. Hazards Control. 9 (4), 199–214. https://doi.org/10.18502/jfqhc.9.4.11375 (2022).

    Google Scholar 

  22. Mogahed Fahim, K. et al. Innovative application of postbiotics, parabiotics and encapsulated Lactobacillus plantarum RM1 and Lactobacillus paracasei KC39 for detoxification of aflatoxin M1 in milk powder. J. Dairy Res. 88 (4), 429–435. https://doi.org/10.1017/S002202992100090X (2021). DOI.

    Google Scholar 

  23. Farouk, A. et al. Prevention of aflatoxin occurrence using Nuts-Edible coating of ginger oil nanoemulsions and investigate the molecular Docking strategy. Plants 11 https://doi.org/10.3390/plants11172228 (2022).

  24. Soliman, T. N. & Shehata, S. H. Characteristics of fermented camel’s milk fortified with Kiwi or avocado fruits. Acta Scientiarum Polonorum Technologia Aliment. 18 (1), 53–63. https://doi.org/10.17306/J.AFS.2019.0602 (2019). DOI.

    Google Scholar 

  25. Kiros, E. et al. Effect of Carrot juice and stabilizer on the physicochemical and Microbiological properties of yoghurt. LWT – Food Sci. Technol. 69, 191–196. https://doi.org/10.1016/j.lwt.2016.01.026 (2016).

    Google Scholar 

  26. Ali, H. S. et al. Quality attributes of Sesame butter (Tahini) fortified with lyophilized powder of edible mushroom (Agaricus blazei). Foods 11 https://doi.org/10.3390/foods11223691 (2022).

  27. Kumar, M. et al. Chemically characterised Artemisia nilagirica (Clarke) Pamp. Essential oil as a safe plant-based preservative and shelf-life enhancer of millets against fungal and aflatoxin contamination and lipid peroxidation. Plant. Biosystems – Int. J. Dealing all Aspects Plant. Biology. 154 (3), 269–276. https://doi.org/10.1080/11263504.2019.1587539 (2020).

    Google Scholar 

  28. Shehata, M. G. et al. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals Agricultural Sci. 64 (1), 71–78. https://doi.org/10.1016/j.aoas.2019.05.002 (2019).

    Google Scholar 

  29. Aiello, F. et al. Improving Kefir bioactive properties by functional enrichment with plant and Agro-Food waste extracts. Fermentation 6 https://doi.org/10.3390/fermentation6030083 (2020).

  30. McClements, D. J., Newman, E. & McClements, I. F. Plant-based milks: A review of the science underpinning their Design, Fabrication, and performance. Compr. Rev. Food Sci. Food Saf. 18 (6), 2047–2067. https://doi.org/10.1111/1541-4337.12505 (2019).

    Google Scholar 

  31. Guimarães, A. et al. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 264, 31–38. https://doi.org/10.1016/j.ijfoodmicro.2017.10.025 (2018).

    Google Scholar 

  32. Ali, S. F., Saad, O. A. & Hussein, S. A. Antimicrobial activity of probiotic bacteria. Egypt. Acad. J. Biol. Sci. G Microbiol. 5 (2), 21–34. https://doi.org/10.21608/eajbsg.2013.16636 (2013).

    Google Scholar 

  33. Coman, M. M. et al. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and SYNBIO® against pathogens. J. Appl. Microbiol. 117 (2), 518–527. https://doi.org/10.1111/jam.12544 (2014).

    Google Scholar 

  34. Shehata, M. G., Badr, A. N., El, S. A. & Sohaimy Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties. Bioscience Res. 15 (4), 4171–4183 (2018).

    Google Scholar 

  35. Gerbaldo, G. A. et al. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiol. Lett. 332 (1), 27–33. https://doi.org/10.1111/j.1574-6968.2012.02570.x (2012).

    Google Scholar 

  36. Peltonen, K. et al. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci. 84 (10), 2152–2156. https://doi.org/10.3168/jds.S0022-0302(01)74660-7 (2001).

    Google Scholar 

  37. Campana, R., van Hemert, S. & Baffone, W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathogens. 9 (1). https://doi.org/10.1186/s13099-017-0162-4 (2017). p. 12.DOI.

  38. Maicas, S. & Mateo, J. J. Chap. 41 – Sustainability of food industry wastes: a microbial approach, in Valorization of Agri-Food Wastes and By-Products, R. Bhat, Editor. Academic Press. pp. 829–854. (2021). https://doi.org/10.1016/B978-0-12-824044-1.00020-9

  39. Gu, M. et al. Potential oral probiotic Lactobacillus pentosus MJM60383 inhibits Streptococcus mutans biofilm formation by inhibiting sucrose decomposition. J. Oral Microbiol. 15 (1), 2161179. https://doi.org/10.1080/20002297.2022.2161179 (2023).

    Google Scholar 

  40. Mokoonlall, A., Nöbel, S. & Hinrichs, J. Post-processing of fermented milk to stirred products: reviewing the effects on gel structure. Trends Food Sci. Technol. 54, 26–36. https://doi.org/10.1016/j.tifs.2016.05.012 (2016).

    Google Scholar 

  41. León-López, A. et al. Characterization of Whey-Based fermented beverages supplemented with hydrolyzed collagen: antioxidant activity and bioavailability. Foods 9 https://doi.org/10.3390/foods9081106 (2020).

  42. Wagoner, T. B. & Foegeding, E. A. Whey protein–pectin soluble complexes for beverage applications. Food Hydrocoll. 63, 130–138. https://doi.org/10.1016/j.foodhyd.2016.08.027 (2017).

    Google Scholar 

  43. Singh, R. et al. Invited review: Shelf-stable dairy protein beverages—Scientific and technological aspects. J. Dairy Sci. 105 (12), 9327–9346. https://doi.org/10.3168/jds.2022-22208 (2022).

    Google Scholar 

  44. Badr, A. N. & Naeem, M. A. Protective efficacy using Cape- golden berry against pre-carcinogenic aflatoxins induced in rats. Toxicol. Rep. 6, 607–615. https://doi.org/10.1016/j.toxrep.2019.06.012 (2019).

    Google Scholar 

  45. Nam, S. H. et al. Sensory characterisation of a high-protein beverage. Int. J. Dairy Technol. 70 (3), 432–438. https://doi.org/10.1111/1471-0307.12362 (2017).

    Google Scholar 

  46. Cho, Y. H. et al. Production of functional High-protein beverage fermented with lactic acid bacteria isolated from Korean traditional fermented food. Korean J. Food Sci. Anim. Resour. 35 (2). https://doi.org/10.5851/kosfa.2015.35.2.189 (2015). p. 189 – 96.DOI.

  47. Deegan, L. H. et al. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 16 (9), 1058–1071. https://doi.org/10.1016/j.idairyj.2005.10.026 (2006).

    Google Scholar 

  48. Korhonen, H. & Pihlanto, A. Bioactive peptides: production and functionality. Int. Dairy J. 16 (9), 945–960. https://doi.org/10.1016/j.idairyj.2005.10.012 (2006).

    Google Scholar 

  49. Muhialdin, B. J. et al. Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control. 109, 106898. https://doi.org/10.1016/j.foodcont.2019.106898 (2020).

    Google Scholar 

  50. Punia Bangar, S. et al. Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience. 46, 101615. https://doi.org/10.1016/j.fbio.2022.101615 (2022).

    Google Scholar 

  51. Schnürer, J. & Magnusson, J. Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci. Technol. 16 (1), 70–78. https://doi.org/10.1016/j.tifs.2004.02.014 (2005).

    Google Scholar 

  52. Crowley, S., Mahony, J. & van Sinderen, D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci. Technol. 33 (2), 93–109. https://doi.org/10.1016/j.tifs.2013.07.004 (2013). DOI.

    Google Scholar 

  53. Mikš-Krajnik, M. et al. Loop-mediated isothermal amplification (LAMP) coupled with bioluminescence for the detection of Listeria monocytogenes at low levels on food contact surfaces. Food Control. 60, 237–240. https://doi.org/10.1016/j.foodcont.2015.07.035 (2016). .DOI.

    Google Scholar 

Download references

Acknowledgements

The Authors expressed their gratitude for The Science and Technology Development (STDF) to cover the publishing through the agreement with Nature Scientific. The authors also express their gratitude to the Academy of Scientific Research & Technology (ASRT-STAR, Egypt) and National Research Centre (Egypt) for all the support provided to this article.

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). “ This research did not receive a dedicated financial grant from public, commercial, or not-for-profit funding agencies. Any institutional support acknowledged above was in the form of in-kind facilities and technical help only.”

Author information

Authors and Affiliations

  1. Dairy Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt

    Tarek Nour Soliman & Tarik Nour Soliman

  2. Food Toxicology and Contaminants Department, National Research Centre, Dokki, Cairo, 12622, Egypt

    Ahmed Noah Badr & Yehia Hassan Abu Sree

  3. Academy of Scientific Research & Technology (ASRT), 101 Kasr Al-Ainy St, Cairo, Egypt

    Ahmed Noah Badr

  4. Botany Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt

    Feriala A. A. Abu Safe

  5. Department of Chemistry, Poznań University of Life Science, ul. Wojska Polskiego 75, 60- 625, Poznań, Poland

    Karolina Hoppe

  6. Medicinal Chemistry Department, Minnesota University, Minneapolis, MN, 55455, USA

    Ahmed Noah Badr & Wayne T. Shier

Authors

  1. Tarek Nour Soliman
  2. Ahmed Noah Badr
  3. Feriala A. A. Abu Safe
  4. Karolina Hoppe
  5. Wayne T. Shier
  6. Yehia Hassan Abu Sree
  7. Tarik Nour Soliman

Contributions

Conceptualization , Tarek Nour Soliman, and Ahmed Noah Badr; Data curation , Karolina Hoppe, W. T. Shier, Yehia Hassan Abu Sree, and Tarek Nour Soliman; Formal analysis , Feriala A Abu Safe, Ahmed Noah Badr, and Tarek Nour Soliman; Investigation , Karolina Hoppe, Ahmed Noah Badr, and Tarek Nour Soliman; Methodology , Ahmed Noah Badr and Tarek Nour Soliman; Resources , Feriala A. Abu Safe, Ahmed Noah Badr, and Yehia Hassan Abu Sree; Software , Yehia Hassan Abu Sree, Karolina Hoppe, Feriala A. Abu Safe, and Tarik Nour Soliman; Validation , Tarek Nour Soliman, Yehia Hassan Abu Sree, Karolina Hoppe; Writing—original draft , W. T. Shier and Karolina Hoppe; Writing—review & editing , W. T. Shier and Ahmed Noah Badr. All authors have read, revised, and accepted the final manuscript form.

Corresponding author

Correspondence to Tarik Nour Soliman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent for publication

This paper was not published previously, and it is not under consideration for publication elsewhere. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, T.N., Badr, A.N., Abu Safe, F.A.A. et al. Synergistic antifungal and anti-aflatoxigenic effects of lactic acid bacteria and golden berry in a functional high-protein beverage. Sci Rep (2025). https://doi.org/10.1038/s41598-025-24160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-24160-y

Keywords