Search-and-remove genome editing allows selection of cells by DNA sequence

search-and-remove-genome-editing-allows-selection-of-cells-by-dna-sequence
Search-and-remove genome editing allows selection of cells by DNA sequence

References

  1. Richardson, C., Kelsh, R. N. & R, J. R. New advances in CRISPR/Cas-mediated precise gene-editing techniques. Dis. Model Mech. 16, https://doi.org/10.1242/dmm.049874 (2023).

  2. Riesenberg, S. et al. Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nat. Methods 20, 1388–1399 (2023).

    Google Scholar 

  3. Wimberger, S. et al. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. Nat. Commun. 14, 4761 (2023).

    Google Scholar 

  4. Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2023).

    Google Scholar 

  5. Pandey, S. et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01227-1 (2024).

  6. Selvaraj, S. et al. High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nat. Biotechnol. 42, 731–744 (2024).

    Google Scholar 

  7. Stewart-Ornstein, J. & Lahav, G. Dynamics of CDKN1A in Single Cells Defined by an Endogenous Fluorescent Tagging Toolkit. Cell Rep. 14, 1800–1811 (2016).

    Google Scholar 

  8. Eghbalsaied, S. & Kues, W. A. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII. Sci. Rep. 13, 2690 (2023).

    Google Scholar 

  9. Li, S. et al. Universal toxin-based selection for precise genome engineering in human cells. Nat. Commun. 12, 497 (2021).

    Google Scholar 

  10. Agudelo, D. et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat. Methods 14, 615–620 (2017).

    Google Scholar 

  11. Challagulla, A. et al. Marker counter-selection via CRISPR/Cas9 co-targeting for efficient generation of genome-edited avian cell lines and germ cells. Anim. Biotechnol. 33, 1235–1245 (2022).

    Google Scholar 

  12. Reuven, N. & Shaul, Y. Selecting for CRISPR-edited knock-in Cells. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms231911919 (2022).

  13. Moran, D. M., Shen, H. & Maki, C. G. Puromycin-based vectors promote a ROS-dependent recruitment of PML to nuclear inclusions enriched with HSP70 and Proteasomes. BMC Cell Biol. 10, 32 (2009).

    Google Scholar 

  14. Rosenbloom, J., Endo, R. & Harsch, M. Termination of procollagen chain synthesis by puromycin. Evidence that assembly and secretion require a COOH-terminal extension. J. Biol. Chem. 251, 2070–2076 (1976).

    Google Scholar 

  15. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Google Scholar 

  16. DiCarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 41, 4336–4343 (2013).

    Google Scholar 

  17. Laughery, M. F. & Wyrick, J. J. Simple CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Curr. Protoc. Mol. Biol. 129, e110 (2019).

    Google Scholar 

  18. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Google Scholar 

  19. Penewit, K. et al. Efficient and scalable precision genome editing in Staphylococcus aureus through conditional recombineering and CRISPR/Cas9-mediated counterselection. mBio 9, https://doi.org/10.1128/mBio.00067-18 (2018).

  20. Oh, J. H. & van Pijkeren, J. P. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).

    Google Scholar 

  21. Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol. 87, 20130685 (2014).

    Google Scholar 

  22. Truong, L. N. et al. Microhomology-mediated end Joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc. Natl. Acad. Sci. USA 110, 7720–7725 (2013).

    Google Scholar 

  23. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).

    Google Scholar 

  24. Shrivastav, M., De Haro, L. P. & Nickoloff, J. A. Regulation of DNA double-strand break repair pathway choice. Cell Res 18, 134–147 (2008).

    Google Scholar 

  25. Bernheim, A., Bikard, D., Touchon, M. & Rocha, E. P. C. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180088 (2019).

    Google Scholar 

  26. Sharda, M., Badrinarayanan, A. & Seshasayee, A. S. N. Evolutionary and comparative analysis of bacterial nonhomologous end joining repair. Genome Biol. Evol. 12, 2450–2466 (2020).

    Google Scholar 

  27. Chayot, R., Montagne, B., Mazel, D. & Ricchetti, M. An end-joining repair mechanism in Escherichia coli. Proc. Natl. Acad. Sci. USA 107, 2141–2146 (2010).

    Google Scholar 

  28. Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).

    Google Scholar 

  29. Schimmel, J. et al. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Rep. 42, https://doi.org/10.1016/j.celrep.2023.112019 (2023).

  30. Zheng, T. et al. Profiling single-guide RNA specificity reveals a mismatch-sensitive core sequence. Sci. Rep. 7, 40638 (2017).

    Google Scholar 

  31. Wang, Y. et al. Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci. Rep. 10, 2269 (2020).

    Google Scholar 

  32. Steyer, B. et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 10, 642–654 (2018).

    Google Scholar 

  33. Sluch, V. M. et al. Highly efficient scarless knock-in of reporter genes into human and mouse pluripotent stem cells via transient antibiotic selection. PLoS ONE 13, e0201683 (2018).

    Google Scholar 

  34. Cerbini, T., Luo, Y., Rao, M. S. & Zou, J. Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe harbor. J. Vis. Exp. https://doi.org/10.3791/52504 (2015).

  35. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Google Scholar 

  36. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 40, 402–410 (2022).

    Google Scholar 

  37. Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    Google Scholar 

  38. Cullot, G. et al. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02488-6 (2024).

  39. Riesenberg, S., Kanis, P., Karlic, R. & Maricic, T. Robust prediction of synthetic gRNA activity and cryptic DNA repair by disentangling cellular CRISPR cleavage outcomes. Nat. Commun. 16, 4717 (2025).

    Google Scholar 

  40. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Google Scholar 

  41. Riesenberg, S., Helmbrecht, N., Kanis, P., Maricic, T. & Paabo, S. Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nat. Commun. 13, 489 (2022).

    Google Scholar 

  42. Zhang, L. et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 12, https://doi.org/10.1038/s41467-021-24017-8 (2021).

  43. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    Google Scholar 

  44. Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Google Scholar 

  45. Koenig, Z. et al. A harmonized public resource of deeply sequenced diverse human genomes. Genome Res. 34, 796–809 (2024).

    Google Scholar 

  46. Zeberg, H., Jakobsson, M. & Pääbo, S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell 187, 1047–1058 (2024).

    Google Scholar 

  47. Anzai, T. et al. Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9. Methods Mol. Biol. 2320, 247–259 (2021).

    Google Scholar 

  48. Gonzalez, F. et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15, 215–226 (2014).

    Google Scholar 

  49. Lindgren, A. G., Veldman, M. B. & Lin, S. ETV2 expression increases the efficiency of primitive endothelial cell derivation from human embryonic stem cells. Cell Regen. 4, 1 (2015).

    Google Scholar 

  50. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).

    Google Scholar 

  51. Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229 e226 (2023).

    Google Scholar 

  52. Rojek, J. B. et al. Expanding the CRISPR toolbox for Chinese hamster ovary cells with comprehensive tools for Mad7 genome editing. Biotechnol. Bioeng. 120, 1478–1491 (2023).

    Google Scholar 

  53. Liu, Z. et al. ErCas12a CRISPR-MAD7 for model generation in human cells, mice, and rats. CRISPR J. 3, 97–108 (2020).

    Google Scholar 

  54. Gonatopoulos-Pournatzis, T. et al. Genetic interaction mapping and exon-resolution functional genomics with a hybrid Cas9-Cas12a platform. Nat. Biotechnol. 38, 638–648 (2020).

    Google Scholar 

  55. Muller, P. A. & Vousden, K. H. p53 mutations in cancer. Nat. Cell Biol. 15, 2–8 (2013).

    Google Scholar 

  56. Rowley, J. D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243, 290–293 (1973).

    Google Scholar 

  57. Groffen, J. & Heisterkamp, N. The BCR/ABL hybrid gene. Baillieres Clin. Haematol. 1, 983–999 (1987).

    Google Scholar 

  58. Tycko, J. et al. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10, 4063 (2019).

    Google Scholar 

  59. Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell 28, 1136–1147 e1135 (2021).

    Google Scholar 

  60. Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    Google Scholar 

  61. Wienert, B. et al. Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364, 286–289 (2019).

    Google Scholar 

  62. Schiroli, G. et al. Precise gene editing preserves hematopoietic stem cell function following transient p53-mediated DNA damage response. Cell Stem Cell 24, 551–565 e558 (2019).

    Google Scholar 

  63. Conti, A. et al. S255: Cellular senescence and inflammatory programs are unintended consequences of CRISPR-CAS9 gene editing in hematopoietic stem and progenitor cells. HemaSphere 7, e7928137 (2023).

    Google Scholar 

  64. Onder, T. T. & Daley, G. Q. New lessons learned from disease modeling with induced pluripotent stem cells. Curr. Opin. Genet Dev. 22, 500–508 (2012).

    Google Scholar 

  65. Schmieder, V. et al. Towards maximum acceleration of monoclonal antibody development: leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool. J. Biotechnol. 349, 53–64 (2022).

    Google Scholar 

  66. Ramachandran, H., Martins, S., Kontarakis, Z., Krutmann, J. & Rossi, A. Fast but not furious: a streamlined selection method for genome-edited cells. Life Sci. Alliance 4, https://doi.org/10.26508/lsa.202101051 (2021).

  67. Kim, K. T. et al. Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials 262, 120295 (2020).

    Google Scholar 

  68. Kim, H. et al. Surrogate reporters for enrichment of cells with nuclease-induced mutations. Nat. Methods 8, 941–943 (2011).

    Google Scholar 

  69. Chang, C. R. et al. SEED-Selection enables high-efficiency enrichment of primary T cells edited at multiple loci. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02531-6 (2025).

  70. Allen, A. G. et al. A highly efficient transgene knock-in technology in clinically relevant cell types. Nat. Biotechnol. 42, 458–469 (2024).

    Google Scholar 

  71. Chen, Q., Zhang, Y. & Yin, H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv. Drug Deliv. Rev. 168, 246–258 (2021).

    Google Scholar 

  72. Liu, L. et al. Circular guide RNA for improved stability and CRISPR-Cas9 editing efficiency in vitro and in bacteria. ACS Synth. Biol. 12, 350–359 (2023).

    Google Scholar 

  73. Bin Moon, S. et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3’-overhang. Nat. Commun. 9, 3651 (2018).

    Google Scholar 

  74. Xun, G. et al. Harnessing noncanonical crRNA for highly efficient genome editing. Nat. Commun. 15, 3823 (2024).

    Google Scholar 

  75. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Google Scholar 

  76. Fu, B. X., Hansen, L. L., Artiles, K. L., Nonet, M. L. & Fire, A. Z. Landscape of target: guide homology effects on Cas9-mediated cleavage. Nucleic Acids Res. 42, 13778–13787 (2014).

    Google Scholar 

  77. Bodai, Z., Bishop, A. L., Gantz, V. M. & Komor, A. C. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nat. Commun. 13, 2351 (2022).

    Google Scholar 

  78. Bishop, A. L. et al. Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles. Nat. Commun. 13, 2595 (2022).

    Google Scholar 

  79. Moller, L. et al. Recursive Editing improves homology-directed repair through retargeting of undesired outcomes. Nat. Commun. 13, 4550 (2022).

    Google Scholar 

  80. Niwa, R. et al. Enrichment of allelic editing outcomes by prime editing in induced pluripotent stem cells. CRISPR J. 7, 293–304 (2024).

    Google Scholar 

  81. Qi, T. et al. Base editing-mediated generation of point mutations into human pluripotent stem cells for modeling disease. Front. Cell Dev. Biol. 8, 590581 (2020).

    Google Scholar 

  82. Lackner, M., Helmbrecht, N., Paabo, S. & Riesenberg, S. Detection of unintended on-target effects in CRISPR genome editing by DNA donors carrying diagnostic substitutions. Nucleic Acids Res. 51, e26 (2023).

    Google Scholar 

  83. Liu, B. et al. Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nat. Biotechnol. 42, 1039–1045 (2024).

    Google Scholar 

  84. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Google Scholar 

  85. Jiao, C. et al. Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science 372, 941–948 (2021).

    Google Scholar 

  86. Bravo, J. P. K. et al. RNA targeting unleashes indiscriminate nuclease activity of CRISPR-Cas12a2. Nature 613, 582–587 (2023).

    Google Scholar 

  87. Anastasia, A. et al. The DNA-PK inhibitor AZD7648 sensitizes patient-derived ovarian cancer xenografts to pegylated liposomal doxorubicin and olaparib, preventing abdominal metastases. Mol. Cancer Ther. 21, 555–567 (2022).

    Google Scholar 

  88. Suresh, S. et al. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break. Mol. Ther. 27, 109–109 (2019).

    Google Scholar 

  89. Zatreanu, D. et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Google Scholar 

  90. Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).

    Google Scholar 

  91. van Bussel, M. T. J. et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br. J. Cancer 124, 728–735 (2020).

    Google Scholar 

  92. Rodriguez-Berriguete, G. et al. Small-molecule poltheta inhibitors provide safe and effective tumor radiosensitization in preclinical models. Clin. Cancer Res 29, 1631–1642 (2023).

    Google Scholar 

  93. Yap, T. A. et al. Abstract CT248: AZD7648: a phase I/IIa first-in-human trial of a novel, potent and selective DNA-PK inhibitor in patients with advanced malignancies. Cancer Res. 80, CT248–CT248 (2020).

    Google Scholar 

  94. Riesenberg, S. & Maricic, T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164 (2018).

    Google Scholar 

  95. Mora-Bermúdez, F. et al. Differences and similarities between human and chimpanzee neural progenitors during cerebral cortex development. Elife 5, https://doi.org/10.7554/eLife.18683 (2016).

  96. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Google Scholar 

  97. Renaud, G., Stenzel, U. & Kelso, J. LeeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res. 42, e141 (2014).

    Google Scholar 

  98. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Google Scholar 

  99. Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).

    Google Scholar 

Download references