From waste to energy: a closed-loop two-phase anaerobic digestion system for sustainable dairy wastewater management

from-waste-to-energy:-a-closed-loop-two-phase-anaerobic-digestion-system-for-sustainable-dairy-wastewater-management
From waste to energy: a closed-loop two-phase anaerobic digestion system for sustainable dairy wastewater management

References

  1. OECD and FAO 2024. OECD-FAO Agricultural Outlook 2024-2033. Paris and Rome. 173–182 https://doi.org/10.4060/cd0991en.

  2. Stasinakis, A. S., Charalambous, P. & Vyrides, I. Dairy wastewater management in EU: produced amounts, existing legislation, applied treatment processes and future challenges. J. Environ. Manag. 303, 114152 (2022).

    Google Scholar 

  3. Wu, H., Song, J., Shang, B. & Tao, X. A novel intermittently aerated membrane bioreactor polished by non-ionic polyacrylamide for dairy farm wastewater treatment: irrigation water recovery at pilot-scale. Chem. Eng. J. 502, 157996 (2024).

    Google Scholar 

  4. Guo, H. et al. Reconsidering hydrolysis kinetics for anaerobic digestion of waste activated sludge applying cascade reactors with ultra-short residence times. Water Res. 202, 117398 (2021).

    Google Scholar 

  5. Ye, M., Li, Q. & Li, Y.-Y. Evaluation of anaerobic membrane bioreactor treating dairy processing wastewater: elemental flow, bioenergy production and reduction of CO2 emission. Bioresour. Technol. 385, 129342 (2023).

    Google Scholar 

  6. Hafner, S. C., Watanabe, N., Harter, T., Bergamaschi, B. A. & Parikh, S. J. Effects of solid-liquid separation and storage on monensin attenuation in dairy waste management systems. J. Environ. Manag. 190, 28–34 (2017).

    Google Scholar 

  7. Goli, A. et al. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J. Environ. Treat. Tech. 7, 113–141 (2019).

    Google Scholar 

  8. Liu, Y., Guo, J., Wang, Q. & Huang, D. Prediction of filamentous sludge bulking using a state-based Gaussian processes regression model. Sci. Rep. 6, 31303 (2016).

    Google Scholar 

  9. Ye, M. & Li, Y.-Y. Methanogenic treatment of dairy wastewater: a review of current obstacles and new technological perspectives. Sci. Total Environ. 866, 161447 (2023).

    Google Scholar 

  10. Xie, G.-J., Liu, B.-F., Wang, Q., Ding, J. & Ren, N.-Q. Ultrasonic waste activated sludge disintegration for recovering multiple nutrients for biofuel production. Water Res. 93, 56–64 (2016).

    Google Scholar 

  11. Li, W. et al. Two-Phase improves Bio-hydrogen and Bio-methane production of anaerobic membrane bioreactor from waste activated sludge with digestate recirculation. Chem. Eng. J. 452, 139547 (2023).

    Google Scholar 

  12. Cai, D. et al. Innovative application of CaO2 in two-phase anaerobic digestion to enhance methane production from waste activated sludge: condition optimization and mechanistic insights. Chem. Eng. J. 504, 158911 (2025).

    Google Scholar 

  13. Wang, P., Yu, M., Lin, P., Zheng, Y. & Ren, L. Effects of biochar supported nano zero-valent iron with different carbon/iron ratios on two-phase anaerobic digestion of food waste. Bioresour. Technol. 382, 129158 (2023).

    Google Scholar 

  14. Carneiro, R. B., Gomes, G. M., Zaiat, M. & Santos-Neto, ÁJ. Two-phase (acidogenic-methanogenic) anaerobic fixed bed biofilm reactor enhances the biological domestic sewage treatment: perspectives for recovering bioenergy and value-added by-products. J. Environ. Manag. 317, 115388 (2022).

    Google Scholar 

  15. Collins, B. A. et al. Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: a review and the potential of biochar filters. Renew. Sustain. Energy Rev. 175, 113187 (2023).

    Google Scholar 

  16. Hackula, A. et al. Two-phase anaerobic digestion for enhanced valorisation of whiskey distillery by-products. Bioresour. Technol. 383, 129239 (2023).

    Google Scholar 

  17. Ji, S. et al. Integrated ABR and UASB system for dairy wastewater treatment: engineering design and practice. Sci. Total Environ. 749, 142267 (2020).

    Google Scholar 

  18. Chen, C. et al. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresour. Technol. 216, 571–578 (2016).

    Google Scholar 

  19. Cardeña, R., Buitrón, G., Valdez-Vazquez, I. & Contreras, M. Biohydrogen production from cheese whey in UASB and packed bed reactors: impact of microbial interactions on productivity. Int. J. Hydrog. Energy 141, 1061–1069 (2025).

    Google Scholar 

  20. Achouri, O., Bianco, F., Trancone, G. & Race, M. A critical review of anaerobic biofilm reactors for the renewable biogas production from food waste. J. Environ. Chem. Eng. 13, 118239 (2025).

    Google Scholar 

  21. Zhou, J. et al. Biological VFAs production from proteinaceous wastewater varied with protein type: the role of protein exposed enzyme cleavage sites and hydrolysates biotransformation capacity. Water Res. 275, 123201 (2025).

    Google Scholar 

  22. Ye, M. et al. Organic transformation, lactic acid metabolism, and membrane performance in high-rate methanogenic treatment of dairy processing wastewater using thermophilic high-solid anaerobic membrane bioreactor. Chem. Eng. J. 455, 140780 (2023).

    Google Scholar 

  23. Chen, K. et al. Coupling of biocarriers and dynamic membrane for an enhanced volatile fatty acids production from sludge anaerobic fermentation. Bioresour. Technol. 415, 131725 (2025).

    Google Scholar 

  24. Feng, S. et al. Role of hydraulic retention time in integration of microalgae and activated sludge process for nutrient recycle from diluted dairy liquid digestate. Chem. Eng. J. 484, 149538 (2024).

    Google Scholar 

  25. Jiang, W. et al. Pilot-scale two-phase anaerobic digestion of deoiled food waste and waste activated sludge: effects of mixing ratios and functional analysis. Chemosphere 329, 138653 (2023).

    Google Scholar 

  26. Lu, Y. et al. Gas-delivery membrane as an alternative aeration method to remove dissolved methane from anaerobically treated wastewater. Water Res. 268, 122760 (2025).

    Google Scholar 

  27. Liu, C. et al. Non-targeted facilitation of primary sludge anaerobic fermentation by micro-aeration and the simultaneous nutrients transformations. Chem. Eng. J. 491, 151930 (2024).

    Google Scholar 

  28. Yang, P. et al. Foaming mechanisms and control strategies during the anaerobic digestion of organic waste: a critical review. Sci. Total Environ. 779, 146531 (2021).

    Google Scholar 

  29. Yang, P. et al. Insights into the effect of extracellular polymeric substances on anaerobic digestion foaming: from perspectives of composition, hydrophobicity, and functional groups. Chem. Eng. J. 476, 146812 (2023).

    Google Scholar 

  30. Stanchev, P. et al. Multilevel environmental assessment of the anaerobic treatment of dairy processing effluents in the context of circular economy. J. Clean. Prod. 261, 121139 (2020).

    Google Scholar 

  31. Behjat, M., Svanström, M. & Peters, G. A meta-analysis of LCAs for environmental assessment of a conceptual system: phosphorus recovery from dairy wastewater. J. Clean. Prod. 369, 133307 (2022).

    Google Scholar 

  32. Xing, B.-S. et al. A new substrate equalization method for optimizing the influent conditions and fluid flow patterns of a multifed upflow anaerobic sludge blanket reactor with mature anammox granules. Bioresour. Technol. 400, 130700 (2024).

    Google Scholar 

  33. Xie, Y. et al. A modified anaerobic-anoxic-oxic system for optimizing rural sewage treatment with fluctuating influent flows. Chem. Eng. J. 481, 148492 (2024).

    Google Scholar 

  34. Qin, Y. et al. Mass flow and microbial shifts in recirculated two-phase anaerobic digestion for biohythane production: effect of hydraulic retention time. J. Clean. Prod. 468, 143092 (2024).

    Google Scholar 

  35. Badra, M., Freudenthal, J. & Dumack, K. Sludge retention time in anaerobic digestion affects Archaea by a cascade through microeukaryotes. Water Res. 278, 123371 (2025).

    Google Scholar 

  36. Guo, G. et al. Enhanced methanogenic degradation and membrane fouling associated with protein-EPS by extending sludge retention time in a high-solid anaerobic membrane bioreactor treating concentrated organic sludge. Water Res. 248, 120879 (2024).

    Google Scholar 

  37. Shao, Q. et al. Enhanced reactor stability to shock load with hydrochar: responses of anaerobic granular sludge. Chem. Eng. J. 503, 158274 (2025).

    Google Scholar 

  38. Wu, D. et al. Carrier-based granules vs aerobic granular sludge. Water Res. 286, 124202 (2025).

    Google Scholar 

  39. Kjerstadius, H., de Vrieze, J., la Cour Jansen, J. & Davidsson, A. Detection of acidification limit in anaerobic membrane bioreactors at ambient temperature. Water Res. 106, 429–438 (2016).

    Google Scholar 

  40. Liu, Y.-C. et al. Microbial community response to temperature reduction during anaerobic treatment of long chain fatty acids-containing wastewater. Bioresour. Technol. 413, 131529 (2024).

    Google Scholar 

  41. He, L. et al. Applying side-stream gas recirculation to promote anaerobic digestion of food waste under ammonia stress: overlooked impact of gaseous atmospheres on microorganisms. Water Res. 281, 123571 (2025).

    Google Scholar 

  42. Li, J., Chen, Q., Fan, Y., Wang, F. & Meng, J. Improved methane production of two-phase anaerobic digestion by cobalt: efficiency and mechanism. Bioresour. Technol. 381, 129123 (2023).

    Google Scholar 

  43. Kusmayadi, A. et al. Integration of microalgae cultivation and anaerobic co-digestion with dairy wastewater to enhance bioenergy and biochemicals production. Bioresour. Technol. 376, 128858 (2023).

    Google Scholar 

  44. Wang, X., Wang, P., Meng, X. & Ren, L. Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition. Sci. Total Environ. 820, 153244 (2022).

    Google Scholar 

  45. Wang, C. et al. Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition. Bioresour. Technol. 272, 162–170 (2019).

    Google Scholar 

  46. Lu, Q., Wang, S., Ping, Q. & Li, Y. A novel approach to enhance methane production during anaerobic digestion of waste activated sludge by combined addition of trypsin, nano-zero-valent iron and activated carbon. Chemosphere 341, 140007 (2023).

    Google Scholar 

  47. Lei, Z. et al. Synergic treatment of domestic wastewater and food waste in an anaerobic membrane bioreactor demo plant: process performance, energy consumption, and greenhouse gas emissions. Water Res. 266, 122371 (2024).

    Google Scholar 

  48. Chen, N. et al. Enhancement of volatile fatty acids degradation and rapid methanogenesis in a biochar-assisted anaerobic membrane bioreactor via enhancing direct interspecies electron transfer. J. Environ. Manag. 380, 125045 (2025).

    Google Scholar 

  49. James, A. et al. Coupling electron bifurcation and interspecies electron transfer to mitigate ammonia and acids inhibition. Renew. Sustain. Energy Rev. 210, 115166 (2025).

    Google Scholar 

  50. Zhou, L. et al. Synergistic digestion of banana pseudo-stems with chicken manure to improve methane production: semi-continuous manipulation and microbial community analysis. Bioresour. Technol. 328, 124851 (2021).

    Google Scholar 

  51. Li, Y. et al. In-situ methane enrichment in anaerobic digestion of food waste slurry by nano zero-valent iron: long-term performance and microbial community succession. J. Environ. Manag. 356, 120733 (2024).

    Google Scholar 

  52. Guo, H. et al. The biochemical mechanism of enhancing the conversion of chicken manure to biogenic methane using coal slime as additive. Bioresour. Technol. 344, 126226 (2022).

    Google Scholar 

  53. Zhao, J. et al. Cobalt-modified digestate-derived biochar enhances kitchen waste anaerobic dry digestion: performance, microbial mechanisms, and metabolic pathways. Chem. Eng. J. 499, 155951 (2024).

    Google Scholar 

  54. Zhao, Y. et al. Metagenomic and proteomic insights into graphene oxide-boosted anaerobic co-fermentation of food waste and sewage sludge for volatile fatty acids production. Chem. Eng. J. 504, 158706 (2025).

    Google Scholar 

  55. Sadino-Riquelme, M. C. et al. Computational fluid dynamics (CFD) modeling applied to biological wastewater treatment systems: an overview of strategies for the kinetics integration. Chem. Eng. J. 466, 143180 (2023).

    Google Scholar 

  56. Şahin, N. & Şibil, R. Hydrodynamic performance evaluation of screening on the physical unit operations in wastewater treatment based on experimentally validated CFD computations. Process Saf. Environ. Prot. 171, 136–151 (2023).

    Google Scholar 

  57. Mezzullo, W. G., McManus, M. C. & Hammond, G. P. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste. Appl. Energy 102, 657–664 (2013).

    Google Scholar 

Download references