References
-
Pandey, A. S., Bawiskar, D. & Wagh, V. Nanocosmetics and skin health: a comprehensive review of nanomaterials in cosmetic formulations. Cureus 16, e52754 (2024).
-
Gupta, V. et al. Nanotechnology in cosmetics and cosmeceuticals—a review of latest advancements. Gels 8, 173 (2022).
-
Salvioni, L. et al. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 293, 102437 (2021).
-
Ruth, F. et al. Gold nanoparticle synthesized from centella asiatica: emphasis on optimization, characterization, antioxidant, antiglycation, and cytotoxicity effect as an anti-aging cosmetic ingredient. BioNanoSci. 15, 45 (2024).
-
Dhandapani, S., Wang, R., Cheol Hwang, K., Kim, H. & Kim, Y. J. Exploring the potential anti-inflammatory effect of biosynthesized gold nanoparticles using Isodon excisus leaf tissue in human keratinocytes. Arab. J. Chem. 16, 105113 (2023).
-
Ben Haddada, M. et al. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 189, 110855 (2020).
-
Gupta, R. & Rai, B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J. Phys. Chem. B 120, 7133–7142 (2016).
-
Michniak-Kohn, B. & Kohn, J. Overcoming the barrier of skin to drug permeation for localized dermatological therapies. J. Med. Sci. 92, e926–e926 (2023).
-
Bruna, T., Maldonado-Bravo, F., Jara, P. & Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 22, 7202 (2021).
-
Gibała, A. et al. Antibacterial and antifungal properties of silver nanoparticles—effect of a surface-stabilizing agent. Biomolecules 11, 1481 (2021).
-
Cardoza, C., Nagtode, V., Pratap, A. & Mali, S. N. Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. Health Sci. Rev. 4, 100051 (2022).
-
Kowalska, A., Adamska, E., Synak, A. & Grobelna, B. The optimization of the one-pot synthesis of Au@SiO2 core–shell nanostructures: modification with dansyl group and their fluorescent properties. Materials 17, 2213 (2024).
-
Oh, J.-G. & Kim, H. Synthesis of core–shell nanoparticles with a Pt nanoparticle core and a silica shell. Curr. Appl. Phys. 13, 130–136 (2013).
-
Buchman, J. T., Pho, T., Rodriguez, R. S., Feng, Z. V. & Haynes, C. L. Coating iron oxide nanoparticles with mesoporous silica reduces their interaction and impact on S. oneidensis MR-1. Chemosphere 237, 124511 (2019).
-
Kembuan, C., Oliveira, H. & Graf, C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. Beilstein J. Nanotechnol. 12, 35–48 (2021).
-
Mitura, S., Sionkowska, A. & Jaiswal, A. Biopolymers for hydrogels in cosmetics: review. J. Mater. Sci. Mater. Med. 31, 50 (2020).
-
Parente, M. E., Ochoa Andrade, A., Ares, G., Russo, F. & Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci. 37, 511–518 (2015).
-
Zöller, K., To, D. & Bernkop-Schnürch, A. Biomedical applications of functional hydrogels: innovative developments, relevant clinical trials and advanced products. Biomaterials 312, 122718 (2025).
-
Ijaz, F. et al. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int. J. Biol. Macromol. 253, 127362 (2023).
-
Zoabi, A., Touitou, E. & Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces 5, 18 (2021).
-
Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J. & Loh, X. J. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015).
-
Chylińska, N. & Maciejczyk, M. Hyaluronic acid and skin: its role in aging and wound-healing processes. Gels 11, 281 (2025).
-
Alves, T. F. R. et al. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics 7, 75 (2020).
-
Adamska, E., Kowalska, A., Wcisło, A., Zima, K. & Grobelna, B. Studying the effect of reducing agents on the properties of gold nanoparticles and their integration into hyaluronic acid hydrogels. Molecules 29, 5837 (2024).
-
Bartoszewska, M., Adamska, E., Kowalska, A. & Grobelna, B. Novelty cosmetic filters based on nanomaterials composed of titanium dioxide nanoparticles. Molecules 28, 645 (2023).
-
López-Muñoz, G. A., Pescador-Rojas, J. A., Ortega-Lopez, J., Salazar, J. S. & Balderas-López, J. A. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations. Nanoscale Res. Lett. 7, 423 (2012).
-
Chen, H. et al. Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength. J. Phys. Chem. C 113, 17691–17697 (2009).
-
Maity, I., Dev, D., Basu, K., Wagner, N. & Ashkenasy, G. Signaling in systems chemistry: programing gold nanoparticles formation and assembly using a dynamic bistable network. Angew. Chem. 60, 4512–4517 (2021).
-
Fu, L.-M. et al. Process optimization of silver nanoparticle synthesis and its application in mercury detection. Micromachines (Basel) 12, 1123 (2021).
-
Souza, I. D. L., Saez, V. & Mansur, C. R. E. Lipid nanoparticles containing coenzyme Q10 for topical applications: an overview of their characterization. Colloids Surf. B Biointerfaces 230, 113491 (2023).
-
Kepekçi, R. A., Yener İlçe, B. & Demir Kanmazalp, S. Plant-derived biomaterials for wound healing. Stud. Nat. Prod. Chem. 70, 227–264 (2021).
-
Adamska, E., Niska, K., Wcisło, A. & Grobelna, B. Characterization and cytotoxicity comparison of silver- and silica-based nanostructures. Materials 14, 4987 (2021).
-
Alrefaee, S. H. et al. Rosmarinus officinalis-based Ag/SiO2 and CeO2-Ag/SiO2 core-shell nanocomposites: A green approach to phytochemical analyses, molecular docking, antioxidant and antimicrobial applications with enhanced biocompatibility. Results Eng. 24, 103478 (2024).
-
Rizwan, H. et al. Effect of Au@SiO2 core shell nanoparticles on HG-induced oxidative stress triggered apoptosis in keratinocytes. Life Sci. 328, 121893 (2023).
-
Sikkema, R., Keohan, B. & Zhitomirsky, I. Hyaluronic-acid-based organic-inorganic composites for biomedical applications. Materials 14, 4982 (2021).
-
Dannert, C., Stokke, B. T. & Dias, R. S. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers 11, 275 (2019).
-
Parfenyuk, E. & Dolinina, E. Silica hydrogels as platform for delivery of hyaluronic acid. Pharmaceutics 15, 77 (2023).
-
Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).
-
Vanoli, V. et al. Hyaluronic acid-based hydrogels: drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohyd. Polym. 301, 120309 (2023).
-
Wen, X. et al. Preparation of CMC/HEC crosslinked hydrogels for drug delivery. BioResources 10, 8339–8351 (2015).
-
Croissant, J. G., Fatieiev, Y. & Khashab, N. M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater. 29, 1604634 (2017).
-
European Commission. Directorate General for Health and Food Safety. Guidance on the Safety Assessment of Nanomaterials in Cosmetics. https://health.ec.europa.eu/publications/sccs-guidance-safety-assessment-nanomaterials-cosmetics-2nd-revision_en (Publications Office, LU, 2019).
-
Commissioner, O. of the. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products (2024).
