Colloidal stability and controlled release of Au@SiO₂ and Ag@SiO₂ core–shell nanostructures from biopolymer-based hydrogels

colloidal-stability-and-controlled-release-of-au@sio₂-and-ag@sio₂-core–shell-nanostructures-from-biopolymer-based-hydrogels
Colloidal stability and controlled release of Au@SiO₂ and Ag@SiO₂ core–shell nanostructures from biopolymer-based hydrogels

References

  1. Pandey, A. S., Bawiskar, D. & Wagh, V. Nanocosmetics and skin health: a comprehensive review of nanomaterials in cosmetic formulations. Cureus 16, e52754 (2024).

    Google Scholar 

  2. Gupta, V. et al. Nanotechnology in cosmetics and cosmeceuticals—a review of latest advancements. Gels 8, 173 (2022).

    Google Scholar 

  3. Salvioni, L. et al. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 293, 102437 (2021).

    Google Scholar 

  4. Ruth, F. et al. Gold nanoparticle synthesized from centella asiatica: emphasis on optimization, characterization, antioxidant, antiglycation, and cytotoxicity effect as an anti-aging cosmetic ingredient. BioNanoSci. 15, 45 (2024).

    Google Scholar 

  5. Dhandapani, S., Wang, R., Cheol Hwang, K., Kim, H. & Kim, Y. J. Exploring the potential anti-inflammatory effect of biosynthesized gold nanoparticles using Isodon excisus leaf tissue in human keratinocytes. Arab. J. Chem. 16, 105113 (2023).

    Google Scholar 

  6. Ben Haddada, M. et al. Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf. B Biointerfaces 189, 110855 (2020).

    Google Scholar 

  7. Gupta, R. & Rai, B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J. Phys. Chem. B 120, 7133–7142 (2016).

    Google Scholar 

  8. Michniak-Kohn, B. & Kohn, J. Overcoming the barrier of skin to drug permeation for localized dermatological therapies. J. Med. Sci. 92, e926–e926 (2023).

    Google Scholar 

  9. Bruna, T., Maldonado-Bravo, F., Jara, P. & Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 22, 7202 (2021).

    Google Scholar 

  10. Gibała, A. et al. Antibacterial and antifungal properties of silver nanoparticles—effect of a surface-stabilizing agent. Biomolecules 11, 1481 (2021).

    Google Scholar 

  11. Cardoza, C., Nagtode, V., Pratap, A. & Mali, S. N. Emerging applications of nanotechnology in cosmeceutical health science: Latest updates. Health Sci. Rev. 4, 100051 (2022).

    Google Scholar 

  12. Kowalska, A., Adamska, E., Synak, A. & Grobelna, B. The optimization of the one-pot synthesis of Au@SiO2 core–shell nanostructures: modification with dansyl group and their fluorescent properties. Materials 17, 2213 (2024).

    Google Scholar 

  13. Oh, J.-G. & Kim, H. Synthesis of core–shell nanoparticles with a Pt nanoparticle core and a silica shell. Curr. Appl. Phys. 13, 130–136 (2013).

    Google Scholar 

  14. Buchman, J. T., Pho, T., Rodriguez, R. S., Feng, Z. V. & Haynes, C. L. Coating iron oxide nanoparticles with mesoporous silica reduces their interaction and impact on S. oneidensis MR-1. Chemosphere 237, 124511 (2019).

    Google Scholar 

  15. Kembuan, C., Oliveira, H. & Graf, C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. Beilstein J. Nanotechnol. 12, 35–48 (2021).

    Google Scholar 

  16. Mitura, S., Sionkowska, A. & Jaiswal, A. Biopolymers for hydrogels in cosmetics: review. J. Mater. Sci. Mater. Med. 31, 50 (2020).

    Google Scholar 

  17. Parente, M. E., Ochoa Andrade, A., Ares, G., Russo, F. & Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci. 37, 511–518 (2015).

    Google Scholar 

  18. Zöller, K., To, D. & Bernkop-Schnürch, A. Biomedical applications of functional hydrogels: innovative developments, relevant clinical trials and advanced products. Biomaterials 312, 122718 (2025).

    Google Scholar 

  19. Ijaz, F. et al. Biomolecules based hydrogels and their potential biomedical applications: A comprehensive review. Int. J. Biol. Macromol. 253, 127362 (2023).

    Google Scholar 

  20. Zoabi, A., Touitou, E. & Margulis, K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces 5, 18 (2021).

    Google Scholar 

  21. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J. & Loh, X. J. Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv. Sci. 2, 1400010 (2015).

    Google Scholar 

  22. Chylińska, N. & Maciejczyk, M. Hyaluronic acid and skin: its role in aging and wound-healing processes. Gels 11, 281 (2025).

    Google Scholar 

  23. Alves, T. F. R. et al. Applications of natural, semi-synthetic, and synthetic polymers in cosmetic formulations. Cosmetics 7, 75 (2020).

    Google Scholar 

  24. Adamska, E., Kowalska, A., Wcisło, A., Zima, K. & Grobelna, B. Studying the effect of reducing agents on the properties of gold nanoparticles and their integration into hyaluronic acid hydrogels. Molecules 29, 5837 (2024).

    Google Scholar 

  25. Bartoszewska, M., Adamska, E., Kowalska, A. & Grobelna, B. Novelty cosmetic filters based on nanomaterials composed of titanium dioxide nanoparticles. Molecules 28, 645 (2023).

    Google Scholar 

  26. López-Muñoz, G. A., Pescador-Rojas, J. A., Ortega-Lopez, J., Salazar, J. S. & Balderas-López, J. A. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations. Nanoscale Res. Lett. 7, 423 (2012).

    Google Scholar 

  27. Chen, H. et al. Shape-dependent refractive index sensitivities of gold nanocrystals with the same plasmon resonance wavelength. J. Phys. Chem. C 113, 17691–17697 (2009).

    Google Scholar 

  28. Maity, I., Dev, D., Basu, K., Wagner, N. & Ashkenasy, G. Signaling in systems chemistry: programing gold nanoparticles formation and assembly using a dynamic bistable network. Angew. Chem. 60, 4512–4517 (2021).

    Google Scholar 

  29. Fu, L.-M. et al. Process optimization of silver nanoparticle synthesis and its application in mercury detection. Micromachines (Basel) 12, 1123 (2021).

    Google Scholar 

  30. Souza, I. D. L., Saez, V. & Mansur, C. R. E. Lipid nanoparticles containing coenzyme Q10 for topical applications: an overview of their characterization. Colloids Surf. B Biointerfaces 230, 113491 (2023).

    Google Scholar 

  31. Kepekçi, R. A., Yener İlçe, B. & Demir Kanmazalp, S. Plant-derived biomaterials for wound healing. Stud. Nat. Prod. Chem. 70, 227–264 (2021).

    Google Scholar 

  32. Adamska, E., Niska, K., Wcisło, A. & Grobelna, B. Characterization and cytotoxicity comparison of silver- and silica-based nanostructures. Materials 14, 4987 (2021).

    Google Scholar 

  33. Alrefaee, S. H. et al. Rosmarinus officinalis-based Ag/SiO2 and CeO2-Ag/SiO2 core-shell nanocomposites: A green approach to phytochemical analyses, molecular docking, antioxidant and antimicrobial applications with enhanced biocompatibility. Results Eng. 24, 103478 (2024).

    Google Scholar 

  34. Rizwan, H. et al. Effect of Au@SiO2 core shell nanoparticles on HG-induced oxidative stress triggered apoptosis in keratinocytes. Life Sci. 328, 121893 (2023).

    Google Scholar 

  35. Sikkema, R., Keohan, B. & Zhitomirsky, I. Hyaluronic-acid-based organic-inorganic composites for biomedical applications. Materials 14, 4982 (2021).

    Google Scholar 

  36. Dannert, C., Stokke, B. T. & Dias, R. S. Nanoparticle-hydrogel composites: from molecular interactions to macroscopic behavior. Polymers 11, 275 (2019).

    Google Scholar 

  37. Parfenyuk, E. & Dolinina, E. Silica hydrogels as platform for delivery of hyaluronic acid. Pharmaceutics 15, 77 (2023).

    Google Scholar 

  38. Li, J. & Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 16071 (2016).

    Google Scholar 

  39. Vanoli, V. et al. Hyaluronic acid-based hydrogels: drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohyd. Polym. 301, 120309 (2023).

    Google Scholar 

  40. Wen, X. et al. Preparation of CMC/HEC crosslinked hydrogels for drug delivery. BioResources 10, 8339–8351 (2015).

    Google Scholar 

  41. Croissant, J. G., Fatieiev, Y. & Khashab, N. M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater. 29, 1604634 (2017).

    Google Scholar 

  42. European Commission. Directorate General for Health and Food Safety. Guidance on the Safety Assessment of Nanomaterials in Cosmetics. https://health.ec.europa.eu/publications/sccs-guidance-safety-assessment-nanomaterials-cosmetics-2nd-revision_en (Publications Office, LU, 2019).

  43. Commissioner, O. of the. Guidance for Industry: Safety of Nanomaterials in Cosmetic Products. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-safety-nanomaterials-cosmetic-products (2024).

Download references