References
-
Griffiths, M. W. & Schraft, H. Bacillus cereus food poisoning. In Foodborne Diseases 395–405 (Elsevier, 2017). https://doi.org/10.1016/B978-0-12-385007-2.00020-6.
-
Marrollo, R. Bacillus cereus food-borne disease. In The Diverse Faces of Bacillus cereus 61–72 (Elsevier, 2016). https://doi.org/10.1016/B978-0-12-801474-5.00005-0.
-
Andersen Borge, G. I., Skeie, M., Sørhaug, T., Langsrud, T. & Granum, P. E. Growth and toxin profiles of Bacillus cereus isolated from different food sources. Int. J. Food Microbiol. 69, 237–246 (2001).
-
Liao, S. L. & Tsai, M. H. Bacillus cereus bacteremia in a preterm infant caused by consumption of contaminated breastmilk. Pediatr. Neonatol. 62, 337–338 (2021).
-
Rasko, D. A. et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 32, 977–988 (2004).
-
Rodrigo, D., Rosell, C. M. & Martinez, A. Risk of Bacillus cereus in relation to rice and derivatives. Foods 10, 302 (2021).
-
Stenfors Arnesen, L. P., Fagerlund, A. & Granum, P. E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606 (2008).
-
Pivrncova, E., Bohm, J., Barton, V., Klanova, J. & Linhartova, P. B. Viable bacterial communities in freshly pumped human milk and their changes during cold storage conditions. https://doi.org/10.21203/rs.3.rs-4629897/v1 (2024).
-
Cormontagne, D. et al. Bacillus cereus induces severe infections in preterm neonates: implication at the hospital and human milk bank level. Toxins 13, 123 (2021).
-
Hilliard, N. J., Schelonka, R. L. & Waites, K. B. Bacillus cereus bacteremia in a preterm neonate. J. Clin. Microbiol. 41, 3441–3444 (2003).
-
Zhang, W., Ma, C., Hu, L., Wang, L. & Xu, F. Late-onset sepsis in newborns caused by Bacillus cereus: a case report and literature review. Ann. Clin. Microbiol. Antimicrob. 23, 66 (2024).
-
Jessberger, N., Dietrich, R., Granum, P. E. & Märtlbauer, E. The Bacillus cereus food infection as multifactorial process. Toxins 12, 701 (2020).
-
Tokieda, K., Morikawa, Y., Maeyama, K., Mori, K. & Ikeda, K. Clinical manifestations of Bacillus cereus meningitis in newborn infants: Bacillus cereus meningitis in newborn infants. J. Paediatr. Child. Health. 35, 582–584 (1999).
-
Schoeni, J. L. & Lee Wong, A. C. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68, 636–648 (2005).
-
Senesi, S. & Ghelardi, E. Production secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2, 1690–1703 (2010).
-
Berthold-Pluta, A., Pluta, A. & Garbowska, M. The effect of selected factors on the survival of Bacillus cereus in the human Gastrointestinal tract. Microb. Pathog. 82, 7–14 (2015).
-
Bursová, Š. et al. Evaluation of Bacillus cereus growth in cooked rice. J. Microbiol. Biotechnol. Food Sci. 14, e10985–e10985 (2024).
-
Fermanian, C., Fremy, J. M. & Claisse, M. Effect of temperature on the vegetative growth of type and field strains of Bacillus cereus. Lett. Appl. Microbiol. 19, 414–418 (1994).
-
Finlay, W. J. J., Logan, N. A. & Sutherland, A. D. Bacillus cereus produces most emetic toxin at lower temperatures. Lett. Appl. Microbiol. 31, 385–389 (2000).
-
Jurakova, V. et al. Gene expression and metabolic activity of Streptococcus mutans during exposure to dietary carbohydrates glucose, sucrose, lactose, and xylitol. Mol. Oral Microbiol. 38, 424–441 (2023).
-
Ceuppens, S. et al. Regulation of toxin production by Bacillus cereus and its food safety implications. Crit. Rev. Microbiol. 37, 188–213 (2011).
-
Rowan, N. J. & Anderson, J. G. Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Appl. Environ. Microbiol. 63, 1182–1184 (1997).
-
Prince, C. & Kovac, J. Regulation of enterotoxins associated with Bacillus cereus sensu Lato toxicoinfection. Appl Environ. Microbiol 88, e00405–e00422 (2024).
-
Holesh, J. E., Aslam, S. & Martin, A. Physiology, carbohydrates. In StatPearls (StatPearls Publishing, 2025).
-
Suez, J., Korem, T., Zilberman-Schapira, G., Segal, E. & Elinav, E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes. 6, 149–155 (2015).
-
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).
-
Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods. 15, 475–476 (2018).
-
da Leprevost, V. BioContainers: an open-source and community-driven framework for software standardization. Bioinforma Oxf. Engl. 33, 2580–2582 (2017).
-
Liao, Y., Smyth, G. K. & Shi, W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinforma Oxf. Engl. 30, 923–930 (2014).
-
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
-
Geistlinger, L., Csaba, G. & Zimmer, R. Bioconductor’s enrichmentbrowser: seamless navigation through combined results of set- & network-based enrichment analysis. BMC Bioinform. 17, 45 (2016).
-
Izco, J. M., Tormo, M. & Jiménez-Flores, R. Development of a CE method to analyze organic acids in dairy products: application to study the metabolism of Heat-Shocked spores. J. Agric. Food Chem. 50, 1765–1773 (2002).
-
Zhang, Y. et al. A new mechanism of carbon metabolism and acetic acid balance regulated by CcpA. Microorganisms 11, 2303 (2023).
-
Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. 110, 10039–10044 (2013).
-
Riemann, H. & Cliver, D. O. Foodborne Infections and Intoxications (Academic, 2006).
-
Carlin, F. et al. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res. Int. 43, 1885–1894 (2010).
-
Warda, A. K. et al. Linking Bacillus cereus genotypes and carbohydrate utilization capacity. PLOS ONE. 11, e0156796 (2016).
-
van Netten, P., van De Moosdijk, A., van Hoensel, P., Mossel, D. A. & Perales, I. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69, 73–79 (1990).
-
Fermanian, C., Lapeyre, C., Fremy, J. M. & Claisse, M. Diarrhoeal toxin production at low temperature by selected strains of Bacillus cereus. J. Dairy. Res. 64, 551–559 (1997).
-
Ouhib, O., Clavel, T. & Schmitt, P. The production of Bacillus cereus enterotoxins is influenced by carbohydrate and growth rate. Curr. Microbiol. 53, 222–226 (2006).
-
Chang, J. D. et al. Metabolic profiling reveals nutrient preferences during carbon utilization in Bacillus species. Sci. Rep. 11, 23917 (2021).
-
Kazan, D., Çamurdan, A. & Hortaçsu, A. The effect of glucose concentration on the growth rate and some intracellular components of a recombinant E. coli culture. Process. Biochem. 30, 269–273 (1995).
-
Sutherland, A. D. & Limond, A. M. Influence of pH and sugars on the growth and production of diarrhoeagenic toxin by Bacillus cereus. J. Dairy. Res. 60, 575–580 (1993).
-
Lindbäck, T., Økstad, O. A., Rishovd, A. L. & Kolstø, A. B. Insertional inactivation of HblC encoding the L2 component of Bacillus cereus ATCC 14579 haemolysin BL strongly reduces enterotoxigenic activity, but not the haemolytic activity against human erythrocytes. Microbiology 145, 3139–3146 (1999).
-
Outurquin, G. et al. Bacillus cereus strains from donor human milk and hospital environment: uncovering a putative common origin using comparative analysis of toxin and infra-red spectroscopy profiles. AIMS Microbiol. 9, 419–430 (2023).
-
Wang, Y. et al. Effect of temperature, pH, and Aw on cereulide synthesis and regulator genes transcription with respect to Bacillus cereus growth and cereulide production. Toxins 16, 32 (2024).
