Lipid nanoparticle mediated base editing of the Q344X rhodopsin mutation associated with retinitis pigmentosa

lipid-nanoparticle-mediated-base-editing-of-the-q344x-rhodopsin-mutation-associated-with-retinitis-pigmentosa
Lipid nanoparticle mediated base editing of the Q344X rhodopsin mutation associated with retinitis pigmentosa
  • Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci USA. 2020;117:2710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. 2021;16:1089–128.

    Article  CAS  PubMed  Google Scholar 

  • Choi EH, Suh S, Foik AT, Leinonen H, Newby GA, Gao XD, et al. In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nat Commun. 2022;13:1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller A, Sullivan J, Schwarzer W, Wang M, Park-Windhol C, Hasler PW, et al. High-efficiency base editing in the retina in primates and human tissues. Nat Med. 2025;31:490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, She K, Song L, Jin X, Li R, Zhao Q, et al. In vivo base editing rescues photoreceptors in a mouse model of retinitis pigmentosa. Mol Ther Nucleic Acids. 2023;31:596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:44–57.

    Article  CAS  PubMed  Google Scholar 

  • Chambers CZ, Soo GL, Engel AL, Glass IA, Birth Defects Research L, Frassetto A, et al. Lipid nanoparticle-mediated delivery of mRNA into the mouse and human retina and other ocular tissues. Transl Vis Sci Technol. 2024;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam M, Jozic A, Su GL, Herrera-Barrera M, Curtis A, Arrizabalaga S, et al. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat Commun. 2023;14:6468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv. 2023;9:eadd4623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eygeris Y, Henderson MI, Curtis AG, Jozic A, Stoddard J, Reynaga R, et al. Preformed vesicle approach to LNP manufacturing enhances retinal mRNA delivery. Small. 2024;20:e2400815.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res. 2023;93:101116.

    Article  CAS  PubMed  Google Scholar 

  • Molday RS, Moritz OL. Photoreceptors at a glance. J Cell Sci. 2015;128:4039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung CH, Makino C, Baylor D, Nathans J. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci. 1994;14:5818–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Concepcion F, Chen J. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration. PLoS One. 2010;5:e10904.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, et al. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J. 2024;38:e23606.

    Article  CAS  PubMed  Google Scholar 

  • Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, et al. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci USA. 2024;121:e2416827121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaukonen M, McClements ME, MacLaren RE. CRISPR DNA base editing strategies for treating retinitis pigmentosa caused by mutations in rhodopsin. Genes. 2022;13:1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Andersen JP, Molday RS. Expression and functional characterization of missense mutations in ATP8A2 linked to severe neurological disorders. Hum Mutat. 2019;40:2353–64.

    Article  CAS  PubMed  Google Scholar 

  • Garces F, Jiang K, Molday LL, Stohr H, Weber BH, Lyons CJ, et al. Correlating the expression and functional activity of ABCA4 disease variants with the phenotype of patients with Stargardt disease. Invest Ophthalmol Vis Sci. 2018;59:2305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37:224–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni JA, Witzigmann D, Leung J, van der Meel R, Zaifman J, Darjuan MM, et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale. 2019;11:9023–31.

    Article  CAS  PubMed  Google Scholar 

  • Cheng MHY, Leung J, Zhang Y, Strong C, Basha G, Momeni A, et al. Induction of Bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv Mater. 2023;35:e2303370.

    Article  PubMed  Google Scholar 

  • Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, Lazzarotto CR, et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet. 2023;55:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molday RS. Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Prog Retinal Res. 1988;8:173–209.

    Article  CAS  Google Scholar 

  • Doi T, Molday RS, Khorana HG. Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci USA. 1990;87:4991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–9.

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Kumar S, Agrawal AK, Thanki K, Banerjee UC. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes. Mol Pharm. 2013;10:2416–25.

    Article  CAS  PubMed  Google Scholar 

  • Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov. 2024;23:709–22.

    Article  CAS  PubMed  Google Scholar 

  • Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 2023;19:101–10.

    Article  CAS  PubMed  Google Scholar 

  • Tu T, Song Z, Liu X, Wang S, He X, Xi H, et al. A precise and efficient adenine base editor. Mol Ther. 2022;30:2933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Wagner E, Lachelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci. 2022;10:1166–92.

    Article  CAS  PubMed  Google Scholar 

  • Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, et al. The effect of cryoprotectants and storage conditions on the transfection efficiency, stability, and safety of lipid-based nanoparticles for mRNA and DNA delivery. Adv Health Mater. 2023;12:e2203022.

    Article  Google Scholar 

  • Quagliarini E, Wang J, Renzi S, Cui L, Digiacomo L, Ferri G, et al. Mechanistic insights into the superior DNA delivery efficiency of multicomponent lipid nanoparticles: an in vitro and in vivo study. ACS Appl Mater Interfaces. 2022;14:56666–77.

    Article  CAS  PubMed  Google Scholar 

  • Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–25.

    Article  CAS  PubMed  Google Scholar 

  • Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–6.

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Pan S, Luo X, Zhang X, Zhang W, Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug Chem. 2009;20:322–32.

    Article  CAS  PubMed  Google Scholar 

  • Ono R, Yasuhiko Y, Aisaki KI, Kitajima S, Kanno J, Hirabayashi Y. Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Commun Biol. 2019;2:57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng. 2025;9:57–78.

    Article  CAS  PubMed  Google Scholar 

  • Im SH, Jang M, Park JH, Chung HJ. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing. J Nanobiotechnol. 2024;22:175.

    Article  CAS  Google Scholar 

  • Walther J, Porenta D, Wilbie D, Seinen C, Benne N, Yang Q, et al. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur J Pharm Biopharm. 2024;196:114207.

    Article  CAS  PubMed  Google Scholar 

  • Pulman J, Botto C, Malki H, Ren D, Oudin P, De Cian A, et al. Direct delivery of Cas9 or base editor protein and guide RNA complex enables genome editing in the retina. Mol Ther Nucleic Acids. 2024;35:102349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 2018;62:1–23.

    Article  CAS  PubMed  Google Scholar