Engineering microbial consortia for mixed plastic upcycling

engineering-microbial-consortia-for-mixed-plastic-upcycling
Engineering microbial consortia for mixed plastic upcycling

References

  1. Filho, W. L. et al. An assessment of attitudes towards plastics and bioplastics in Europe. Sci. Total Environ. 755, 142732 (2021).

    Google Scholar 

  2. Tiso, T. et al. Towards bio-upcycling of polyethylene terephthalate. Metab. Eng. 66, 167–178 (2021).

    Google Scholar 

  3. Bauer, F. et al. Plastics and climate change-Breaking carbon lock-ins through three mitigation pathways. One Earth 5, 361–376 (2022).

    Google Scholar 

  4. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Google Scholar 

  5. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Google Scholar 

  6. Jambeck, J. R. et al. Marine pollution. plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Google Scholar 

  7. Knott, B. C. et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc. Natl. Acad. Sci. USA 117, 25476–25485 (2020).

    Google Scholar 

  8. Moon, T. S. Earth: Extinguishing anthropogenic risks through harmonization. N. Biotechnol. 80, 69–71 (2024).

    Google Scholar 

  9. Wei, R. et al. Possibilities and limitations of biotechnological plastic degradation and recycling. Nat. Catal. 3, 867–871 (2020).

    Google Scholar 

  10. Schaerer, L. G. et al. Killing two birds with one stone: chemical and biological upcycling of polyethylene terephthalate plastics into food. Trends Biotechnol. 41, 184–196 (2023).

    Google Scholar 

  11. Hu, Y., Tian, Y., Zou, C. & Moon, T. S. The current progress of tandem chemical and biological plastic upcycling. Biotechnol. Adv. 77, 108462 (2024).

    Google Scholar 

  12. Ng, K. W. J. et al. A facile alternative strategy of upcycling mixed plastic waste into vitrimers. Commun. Chem. 6, 158 (2023).

    Google Scholar 

  13. Zhang, Z. D. et al. Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst. J. Am. Chem. Soc. 145, 22836–22844 (2023).

    Google Scholar 

  14. Zou, C., Chen, J. W., Khan, M. A., Si, G. F. & Chen, C. L. Stapler strategies for upcycling mixed plastics. J. Am. Chem. Soc. 146, 19449–19459 (2024).

    Google Scholar 

  15. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Google Scholar 

  16. Dou, C. et al. A hybrid chemical-biological approach can upcycle mixed plastic waste with reduced cost and carbon footprint. One Earth 6, 1576–1590 (2023).

    Google Scholar 

  17. Wenk, S., Claassens, N. J. & Lindner, S. N. Synthetic metabolism approaches: a valuable resource for systems biology. Cur. Opin. Syst. Biol. 30, 100417 (2022).

  18. Werner, J. J. et al. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc. Natl. Acad. Sci. USA 108, 4158–4163 (2011).

    Google Scholar 

  19. Lyu, X. et al. Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass. J. Ind. Microbiol Biotechnol. 51, kuae025 (2024).

    Google Scholar 

  20. Moon, T. S. SynMADE: synthetic microbiota across diverse ecosystems. Trends Biotechnol. 40, 1405–1414 (2022).

    Google Scholar 

  21. Moon, T. S. et al. Probiotic and microbiota engineering for practical applications. Curr. Opin. Food Sci. 56, 101130 (2024).

  22. Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Google Scholar 

  23. Putman, L. I. et al. Deconstructed plastic substrate preferences of microbial populations from the natural environment. Microbiol Spectr. 11, e0036223 (2023).

    Google Scholar 

  24. Schaerer, L. G. et al. Versatile microbial communities rapidly assimilate ammonium hydroxide-treated plastic waste. J. Ind. Microbiol Biotechnol. 50, kuad008 (2023).

    Google Scholar 

  25. Byrne, E. et al. Pyrolysis-aided microbial biodegradation of high-density polyethylene plastic by environmental inocula enrichment cultures. Acs Sustain Chem. Eng. 10, 2022–2033 (2022).

    Google Scholar 

  26. Lomwongsopon, P., Narancic, T., Wimmer, R. & Varrone, C. Combined thermochemical-biotechnological approach for the valorization of polyolefins into polyhydroxyalkanoates: development of an integrated bioconversion process by microbial consortia. Chemosphere 367, 143671 (2024).

    Google Scholar 

  27. Bao, T., Qian, Y., Xin, Y., Collins, J. J. & Lu, T. Engineering microbial division of labor for plastic upcycling. Nat. Commun. 14, 5712 (2023).

    Google Scholar 

  28. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

  29. Ballerstedt, H. et al. MIXed plastics biodegradation and UPcycling using microbial communities: EU Horizon 2020 project MIX-UP started January 2020. Environ. Sci. Eur. 33, 99 (2021).

    Google Scholar 

  30. Pifer, A. & Sen, A. Chemical recycling of plastics to useful organic compounds by oxidative degradation. Angew. Chem. Int Ed. Engl. 37, 3306–3308 (1998).

    Google Scholar 

  31. Pinsuwan, K., Opaprakasit, P., Petchsuk, A., Dubas, L. & Opaprakasit, M. Chemical recycling of high-density polyethylene (HDPE) wastes by oxidative degradation to dicarboxylic acids and their use as value-added curing agents for acrylate-based materials. Polym Degrad Stabil. 210, 110306 (2023).

  32. Bäckström, E., Odelius, K. & Hakkarainen, M. Trash to treasure: microwave-assisted conversion of polyethylene to functional chemicals. Ind. Eng. Chem. Res 56, 14814–14821 (2017).

    Google Scholar 

  33. Anthraper, D., McLaren, J., Baroutian, S., Munir, M. T. & Young, B. R. Hydrothermal deconstruction of municipal solid waste for solid reduction and value production. J. Clean. Prod. 201, 812–819 (2018).

    Google Scholar 

  34. Cho, S. M., Chang, H. M. & Park, S. Effects of hydrogen peroxide and sodium nitrate on microwave-assisted polyethylene oxidative degradation in the presence of nitric acid. Chem. Eng. J. 499, 155769 (2024).

  35. Huang, Z. et al. Chemical recycling of polystyrene to valuable chemicals via selective acid-catalyzed aerobic oxidation under visible light. J. Am. Chem. Soc. 144, 6532–6542 (2022).

    Google Scholar 

  36. Diao, J., Hu, Y., Tian, Y., Carr, R. & Moon, T. S. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep. 42, 111908 (2023).

    Google Scholar 

  37. Zomorrodi, A. R. & Segre, D. Synthetic ecology of microbes: mathematical models and applications. J. Mol. Biol. 428, 837–861 (2016).

    Google Scholar 

  38. Shin, J. et al. Compositional and temporal division of labor modulates mixed sugar fermentation by an engineered yeast consortium. Nat. Commun. 15, 781 (2024).

    Google Scholar 

  39. McLeod, M. P. et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 103, 15582–15587 (2006).

    Google Scholar 

  40. Parke, D., Garcia, M. A. & Ornston, L. N. Cloning and genetic characterization of dca genes required for beta-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1. Appl Environ. Microbiol 67, 4817–4827 (2001).

    Google Scholar 

  41. Zhou, X. et al. Valorization of PE plastic waste into lipid cells through tandem catalytic pyrolysis and biological conversion. J. Environ. Chem. Eng. 11, 111016 (2023).

    Google Scholar 

  42. Rabot, C. et al. Conversion of polyethylenes into fungal secondary metabolites. Angew. Chem. Int Ed. 62, e202214609 (2023).

    Google Scholar 

  43. Cappelletti, M. et al. Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biot. 104, 8567–8594 (2020).

    Google Scholar 

  44. Diao, J., Tian, Y., Hu, Y. & Moon, T. S. Producing multiple chemicals through biological upcycling of waste poly(ethylene terephthalate). Trends Biotechnol. 43, 620–646 (2024).

  45. Santala, S. et al. Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Micro Cell Fact. 10, 36 (2011).

    Google Scholar 

  46. Biggs, B. W. et al. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 48, 5169–5182 (2020).

    Google Scholar 

  47. Kusenberg, M. et al. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: to decontaminate or not to decontaminate? Waste Manag 138, 83–115 (2022).

    Google Scholar 

  48. Conk, R. J. et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 377, 1561–1566 (2022).

    Google Scholar 

  49. Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    Google Scholar 

  50. Bunescu, A., Lee, S., Li, Q. & Hartwig, J. F. Catalytic hydroxylation of polyethylenes. ACS Cent. Sci. 3, 895–903 (2017).

    Google Scholar 

  51. Negari, M. S., Movahed, S. O. & Ahmadpour, A. Separation of polyvinylchloride (PVC), polystyrene (PS) and polyethylene terephthalate (PET) granules using various chemical agents by flotation technique. Sep Purif. Technol. 194, 368–376 (2018).

    Google Scholar 

  52. Nicholas E. K., III. Method for separating polystyrene and polyethylene terephthalate. WO2002059189A2 (2002).

  53. Li, C. L., Aston, J. E., Lacey, J. A., Thompson, V. S. & Thompson, D. N. Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sust. Energ. Rev. 65, 525–536 (2016).

    Google Scholar 

  54. Olawade, D. B. et al. Smart waste management: a paradigm shift enabled by artificial intelligence. Waste Management Bulletin 2, 244–263 (2024).

  55. Aulakh, S. K. et al. Spontaneously established syntrophic yeast communities improve bioproduction. Nat. Chem. Biol. 19, 951–961 (2023).

    Google Scholar 

  56. Suarez, G. A. et al. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 48, 4585–4600 (2020).

    Google Scholar 

  57. Liu, X., Ding, W. & Jiang, H. Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production. Micro Cell Fact. 16, 125 (2017).

    Google Scholar 

  58. Al Azad, S., Madadi, M., Song, G., Sun, C. & Sun, F. New trends in microbial lipid-based biorefinery for fermentative bioenergy production from lignocellulosic biomass. Biofuel Res. J. 11, 2040–2064 (2024).

    Google Scholar 

  59. Chen, X., Li, S. & Liu, L. Engineering redox balance through cofactor systems. Trends Biotechnol. 32, 337–343 (2014).

    Google Scholar 

  60. Tan, S. Z. & Prather, K. L. Dynamic pathway regulation: recent advances and methods of construction. Curr. Opin. Chem. Biol. 41, 28–35 (2017).

    Google Scholar 

  61. Areniello, M., Matassa, S., Esposito, G. & Lens, P. N. Biowaste upcycling into second-generation microbial protein through mixed-culture fermentation. Trends Biotechnol. 41, 197–213 (2023).

    Google Scholar 

  62. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Google Scholar 

  63. DeLorenzo, D. M., Henson, W. R. & Moon, T. S. Development of chemical and metabolite sensors for rhodococcus opacus PD630. ACS Synth. Biol. 6, 1973–1978 (2017).

    Google Scholar 

Download references