Hyaluronic acid capped cubosomes co-loaded with antitumor agents towards the treatment of colorectal cancer

hyaluronic-acid-capped-cubosomes-co-loaded-with-antitumor-agents-towards-the-treatment-of-colorectal-cancer
Hyaluronic acid capped cubosomes co-loaded with antitumor agents towards the treatment of colorectal cancer

References

  1. Li, Q. et al. Spatiotemporal trends in the burden of colorectal cancer incidence and risk factors at country level from 1990 to 2019. J. Gastroenterol. Hepatol. 39, 2616–2624 (2024).

    Google Scholar 

  2. Sung, H. et al. Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncol. 26, 51–63 (2025).

    Google Scholar 

  3. Roshandel, G., Ghasemi-Kebria, F. & Malekzadeh, R. Colorectal cancer: Epidemiology, risk Factors, and prevention. Cancers (Basel). 16, 1530 (2024).

    Google Scholar 

  4. Dezfuli, A. A. Z., Abu-Elghait, M. & Salem, S. S. Recent insights into nanotechnology in colorectal cancer. Appl. Biochem. Biotechnol. 196, 4457–4471 (2024).

    Google Scholar 

  5. Hossain, M. S. et al. Colorectal cancer: A review of Carcinogenesis, global Epidemiology, current Challenges, risk Factors, preventive and treatment strategies. Cancers (Basel). 14, 1732 (2022).

    Google Scholar 

  6. Duan, X. et al. Hyaluronic acid-tailored prodrug nanoplatforms for efficiently overcoming colorectal cancer chemoresistance and recurrence by synergistic Inhibition of cancer cell stemness. J. Nanobiotechnol. 23, 507 (2025).

    Google Scholar 

  7. Akin Telli, T. et al. Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treat. Rev. 110, 102460 (2022).

    Google Scholar 

  8. Bai, H. et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nat. Commun. 12, 759 (2021).

    Google Scholar 

  9. Xia, D., Hu, C. & Hou, Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur. J. Pharm. Biopharm. 185, 165–176 (2023).

    Google Scholar 

  10. Lang, T. et al. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy. Nat. Commun. 14, 4746 (2023).

    Google Scholar 

  11. Pouya, F. D., Salehi, R., Rasmi, Y., Kheradmand, F. & Fathi-Azarbayjani, A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and Pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci. 332, 122083 (2023).

    Google Scholar 

  12. Din, F. et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291–7309 (2017).

    Google Scholar 

  13. Ding, L. et al. Polymer-Based drug delivery systems for cancer therapeutics. Polym. (Basel). 16, 843 (2024).

    Google Scholar 

  14. Umar, H. et al. Design, Development, and Tumor-Targeted drug delivery applications. Polym. (Basel). 14, 3118 (2022).

    Google Scholar 

  15. Pramanik, A. et al. Affimer tagged cubosomes: targeting of carcinoembryonic antigen expressing colorectal cancer cells using In vitro and In vivo models. ACS Appl. Mater. Interfaces. 14, 11078–11091 (2022).

    Google Scholar 

  16. Zhong, L. et al. Transformative hyaluronic acid-based active targeting supramolecular nanoplatform improves long circulation and enhances cellular uptake in cancer therapy. Acta Pharm. Sin B. 9, 397–409 (2019).

    Google Scholar 

  17. Xiao, B. et al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale 7, 17745–17755 (2015).

    Google Scholar 

  18. Luo, Q. et al. A novel Glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int. J. Pharm. 493, 30–39 (2015).

    Google Scholar 

  19. Toriyabe, N., Hayashi, Y., Hyodo, M. & Harashima, H. Synthesis and evaluation of stearylated hyaluronic acid for the active delivery of liposomes to liver endothelial cells. Biol. Pharm. Bull. 34, 1084–1089 (2011).

    Google Scholar 

  20. Al-mahallawi, A. M., Abdelbary, A. A. & El-Zahaby, S. A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int. J. Pharm. 600, 120490 (2021).

    Google Scholar 

  21. Zaki, R. M. et al. Box Behnken optimization of cubosomes for enhancing the anticancer activity of metformin: Design, characterization, and in-vitro cell proliferation assay on MDA-MB-231 breast and LOVO colon cancer cell lines. Int. J. Pharm. X. 6, 100208 (2023).

    Google Scholar 

  22. Flak, D. K. et al. AT101-Loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomed. 15, 7415–7431. (2020).

    Google Scholar 

  23. Prajapati, P., Patel, R., Patel, D. & Shah, S. Design of experiments (DoE) – Based enhanced quality by design approach to hydrolytic degradation kinetic study of capecitabine by Eco-friendly stability indicating UV-Visible spectrophotometry. Am. J. PharmTech Res. 10, 115–133 (2020).

    Google Scholar 

  24. Angelov, B. et al. Identification of large channels in cationic pegylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter. 11, 3686–3692 (2015).

    Google Scholar 

  25. Malik, M. et al. TPGS-PLA nanomicelles for targeting lung cancer; synthesis, characterization, and in vitro antitumor efficacy. J. Drug Deliv Sci. Technol. 91, 105238 (2024).

    Google Scholar 

  26. Eldeeb, A. E., Salah, S. & Ghorab, M. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: Ex-vivo permeation and in-vivo pharmacodynamic study. J. Drug Deliv Sci. Technol. 52, 236–247 (2019).

    Google Scholar 

  27. Choi, M. J., Woo, M. R., Choi, H. G. & Jin, S. G. Effects of polymers on the drug solubility and dissolution enhancement of poorly Water-Soluble Rivaroxaban. Int. J. Mol. Sci. 23, 9491 (2022).

    Google Scholar 

  28. Meikle, T. G., Keizer, D. W., Separovic, F. & Yao, S. A solution NMR view of lipidic cubic phases: Structure, dynamics, and beyond. BBA Adv. 2, 100062 (2022).

    Google Scholar 

  29. Lin, B. et al. Acidic pH and High-H 2 O 2 dual tumor Microenvironment-Responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS Appl. Mater. Interfaces. 11, 11157–11166 (2019).

    Google Scholar 

  30. Fawad, M. et al. Fabrication of oral sustained release capecitabine loaded nanostructured lipid carriers with improved bioavailability and prolonged anticancer effects. J. Mol. Liq. 421, 126852 (2025).

    Google Scholar 

  31. Sohail, S. et al. Novel biocompatible multifunctional porous magnetic nanoclusters for the targeted delivery of lenvatinib towards hepatocellular carcinoma. Mater. Adv. 6, 1769–1787 (2025).

    Google Scholar 

  32. Chithambara Shathviha, P., Ezhilarasan, D., Rajeshkumar, S. & Selvaraj, J. β-sitosterol mediated silver nanoparticles induce cytotoxicity in human colon cancer HT-29 cells. Avicenna J. Med. Biotechnol. https://doi.org/10.18502/ajmb.v13i1.4577 (2020).

    Google Scholar 

  33. Batool, S. et al. Macrophage targeting with the novel carbopol-based miltefosine-loaded transfersomal gel for the treatment of cutaneous leishmaniasis: in vitro and in vivo analyses. Drug Dev. Ind. Pharm. 47, 440–453 (2021).

    Google Scholar 

  34. Aydoğmuş, Z., Yılmaz, E. M., Öztürk Seyhan, N. & Okyar, A. A new validated high-performance liquid chromatography method for the determination of regorafenib in rat plasma: application for pharmacokinetic study. Sep Sci. Plus 7(6), 2400013 (2024).

    Google Scholar 

  35. Dudhipala, N. & Puchchakayala, G. Capecitabine lipid nanoparticles for anti-colon cancer activity in 1,2-dimethylhydrazine-induced colon cancer: preparation, cytotoxic, pharmacokinetic, and pathological evaluation. Drug Dev. Ind. Pharm. 44, 1572–1582 (2018).

    Google Scholar 

  36. Rehman, U. et al. pH responsive hydrogels for the delivery of capecitabine: Development, optimization and Pharmacokinetic studies. Gels 8, 775 (2022).

    Google Scholar 

  37. Decosterd, L. A. et al. Validation and clinical application of a multiplex high performance liquid chromatography – tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections. J. Chromatogr. B. 1157, 122160 (2020).

    Google Scholar 

  38. Cardoso, E. et al. Quantification of the next-generation oral anti-tumor drugs dabrafenib, trametinib, vemurafenib, cobimetinib, pazopanib, regorafenib and two metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 1083, 124–136 (2018).

    Google Scholar 

  39. Din, F. U. et al. Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery. J. Controlled Release. 374, 590–605 (2024).

    Google Scholar 

  40. Din, F. et al. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv. 24, 502–510 (2017).

    Google Scholar 

  41. Sanap, S. N. et al. Simultaneous determination of fluconazole and Ofloxacin in rabbit tear fluid by LC-MS/MS: application to ocular Pharmacokinetic studies. J. Pharm. Biomed. Anal. 208, 114463 (2022).

    Google Scholar 

  42. Shafique, U. et al. Quality by design for Sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int. J. Pharm. 646, 123480 (2023).

    Google Scholar 

  43. Din, F. et al. Irinotecan-loaded double-reversible thermogel with improved antitumor efficacy without initial burst effect and toxicity for intramuscular administration. Acta Biomater. 54, 239–248 (2017).

    Google Scholar 

  44. Barriga, H. M. G., Holme, M. N. & Stevens, M. M. Cubosomes: the next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed. 58, 2958–2978 (2019).

    Google Scholar 

  45. Varghese, R., Salvi, S., Sood, P., Kulkarni, B. & Kumar, D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci. Commun. 46, 100561 (2022).

    Google Scholar 

  46. Wu, H. et al. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β25–35-treated rats following intranasal administration. Eur. J. Pharm. Biopharm. 80, 368–378 (2012).

    Google Scholar 

  47. Sharma, S. et al. Hyaluronic acid anchored Paclitaxel nanocrystals improves chemotherapeutic efficacy and inhibits lung metastasis in tumor-bearing rat model. RSC Adv. 6, 73083–73095 (2016).

    Google Scholar 

  48. Bokatyi, A. N., Dubashynskaya, N. V. & Skorik, Y. A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 337, 122145 (2024).

    Google Scholar 

  49. Sibgha batool. (2026) Unveiling the treatment potential of irinotecan- loaded biopolymeric nanocarrier system in skin cancer via targeting CD44 receptors. J Pharm. Anal.

  50. Grabowski, M., Gmyrek, D., Żurawska, M. & Trusek, A. Hyaluronic acid: production Strategies, Gel-Forming Properties, and advances in drug delivery systems. Gels 11, 424 (2025).

    Google Scholar 

  51. Sivadasan, D., Sultan, M. H., Alqahtani, S. S. & Javed, S. Cubosomes in drug Delivery—A comprehensive review on its structural Components, Preparation techniques and therapeutic applications. Biomedicines 11, 1114 (2023).

    Google Scholar 

  52. Ananda Kumar Chettupalli, M. A. P. V. V. K. Y. B. R. A. & Design Formulation, In-Vitro and Ex-Vivo evaluation of Atazanavir loaded cubosomal gel. Biointerface Res. Appl. Chem. 11, 12037–12054 (2020).

    Google Scholar 

  53. Ali, M. A. et al. Enhancing the solubility and oral bioavailability of poorly Water-Soluble drugs using monoolein cubosomes. Chem. Pharm. Bull. (Tokyo). 65, 42–48 (2017).

    Google Scholar 

  54. Nasr, M., Younes, H. & Abdel-Rashid, R. S. Formulation and evaluation of cubosomes containing Colchicine for transdermal delivery. Drug Deliv Transl Res. 10, 1302–1313 (2020).

    Google Scholar 

  55. Ahmed, L. M., Hassanein, K. M. A., Mohamed, F. A. & Elfaham, T. H. Formulation and evaluation of Simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci. Rep. 13, 17941 (2023).

    Google Scholar 

  56. Nithya, R., Jerold, P. & Siram, K. Cubosomes of Dapsone enhanced permeation across the skin. J. Drug Deliv Sci. Technol. 48, 75–81 (2018).

    Google Scholar 

  57. Azhari, H., Strauss, M., Hook, S., Boyd, B. J. & Rizwan, S. B. Stabilising cubosomes with tween 80 as a step towards targeting lipid nanocarriers to the blood–brain barrier. Eur. J. Pharm. Biopharm. 104, 148–155 (2016).

    Google Scholar 

  58. Ghadiri, M., Vasheghani-Farahani, E., Atyabi, F., Kobarfard, F. & Hosseinkhani, H. In-Vitro assessment of magnetic Dextran-Spermine nanoparticles for capecitabine delivery to cancerous cells. Iran. J. Pharm. Res. 16, 1320–1334 (2017).

    Google Scholar 

  59. Knikman, J. E., Rosing, H., Guchelaar, H., Cats, A. & Beijnen, J. H. A review of the bioanalytical methods for the quantitative determination of capecitabine and its metabolites in biological matrices. Biomedical Chromatography 34(1), e4732 (2020).

    Google Scholar 

  60. D Kaur, S. et al. Cubosomes as potential nanocarrier for drug delivery: a comprehensive review. J. Pharm. Res. Int. https://doi.org/10.9734/jpri/2021/v33i31B31698 (2021).

    Google Scholar 

  61. Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).

    Google Scholar 

  62. White, B., Banerjee, S., O’Brien, S., Turro, N. J. & Herman, I. P. Zeta-Potential measurements of Surfactant-Wrapped individual Single-Walled carbon nanotubes. J. Phys. Chem. C. 111, 13684–13690 (2007).

    Google Scholar 

  63. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv Rev. 64, 24–36 (2012).

    Google Scholar 

  64. Baião, A., Sousa, F., Oliveira, A. V., Oliveira, C. & Sarmento, B. Effective intracellular delivery of bevacizumab via pegylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomater. Sci. 8, 3720–3729 (2020).

    Google Scholar 

  65. de Luis, I. et al. In vivo efficacy of bevacizumab-loaded albumin nanoparticles in the treatment of colorectal cancer. Drug Deliv Transl Res. 10, 635–645 (2020).

    Google Scholar 

  66. Patil, P. & Killedar, S. Chitosan and Glyceryl monooleate nanostructures containing Gallic acid isolated from Amla fruit: targeted delivery system. Heliyon 7, e06526 (2021).

    Google Scholar 

  67. Baira, S. M. et al. Characterization of degradation products of regorafenib by LC-QTOF-MS and NMR spectroscopy: investigation of rearrangement and odd-electron ion formation during collision-induced dissociations under ESI-MS/MS. New J. Chem. 41, 12091–12103 (2017).

    Google Scholar 

  68. Ameli, H. & Alizadeh, N. Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Adv. 12, 4681–4691 (2022).

    Google Scholar 

  69. Song, L. et al. Dually folate/CD44 receptor-targeted self-assembled hyaluronic acid nanoparticles for dual-drug delivery and combination cancer therapy. J. Mater. Chem. B. 5, 6835–6846 (2017).

    Google Scholar 

  70. Aouameur, D. et al. Stimuli-responsive gel-micelles with flexible modulation of drug release for maximized antitumor efficacy. Nano Res. 11, 4245–4264 (2018).

    Google Scholar 

  71. Yasmin, T. et al. Mimosa/quince seed mucilage–co-poly (methacrylate) hydrogels for controlled delivery of capecitabine: simulation studies, characterization and toxicological evaluation. Int. J. Biol. Macromol. 275, 133468 (2024).

    Google Scholar 

  72. Ahmed, I. et al. Development of tamarind gum/β-CD-co-poly (MAA) hydrogels for pH-driven controlled delivery of capecitabine. Polym. Bull. 81, 6173–6205 (2024).

    Google Scholar 

  73. Yue, M., Yang, R., Jiang, Y. & Yang, X. Precise construction of Regorafenib-loaded gold nanoparticles: investigation of antiproliferative activity and apoptosis induction in liver cancer cells. J Exp. Nanosci 18(1), 2254006 (2023).

    Google Scholar 

  74. Yuan, M. et al. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin. Drug Deliv. 29, 1232–1242 (2022).

    Google Scholar 

  75. Sallam, N. G., Boraie, N. A., Sheta, E. & El-Habashy, S. E. Targeted delivery of genistein for pancreatic cancer treatment using hyaluronic-coated cubosomes bioactivated with frankincense oil. Int. J. Pharm. 649, 123637 (2024).

    Google Scholar 

  76. Wang, D. et al. Cubosome nanoparticles potentiate immune properties of immunostimulants. Int. J. Nanomed. 11, 3571–3583 (2016).

    Google Scholar 

  77. Liu, Y., Chen, X. G., Yang, P. P., Qiao, Z. Y. & Wang, H. Tumor microenvironmental pH and enzyme dual responsive Polymer-Liposomes for synergistic treatment of cancer Immuno-Chemotherapy. Biomacromolecules 20, 882–892 (2019).

    Google Scholar 

  78. Wang, H. et al. Reprogramming tumor microenvironment via dual targeting co-delivery of regorafenib and alpha-difluoromethylornithine in osteosarcoma. Cancer Nanotechnol. 14, 50 (2023).

    Google Scholar 

  79. Chen, C., Sun, W., Wang, X., Wang, Y. & Wang, P. pH-responsive nanoreservoirs based on hyaluronic acid end-capped mesoporous silica nanoparticles for targeted drug delivery. Int. J. Biol. Macromol. 111, 1106–1115 (2018).

    Google Scholar 

  80. Tripathi, A. D. et al. Folate-Mediated targeting and controlled release: PLGA-Encapsulated mesoporous silica nanoparticles delivering capecitabine to pancreatic tumor. ACS Appl. Bio Mater. 7, 7838–7851 (2024).

    Google Scholar 

  81. Hafner, F. T., Werner, D. & Kaiser, M. Determination of regorafenib (Bay 73-4506) and its major human metabolites Bay 75-7495 (M-2) and Bay 81-8752 (M-5) in human plasma by Stable-Isotope Dilution liquid Chromatography–Tandem mass spectrometry. Bioanalysis 6, 1923–1937 (2014).

    Google Scholar 

  82. Lee, S. Y., Kang, M. S., Jeong, W. Y., Han, D. W. & Kim, K. S. Hyaluronic Acid-Based theranostic nanomedicines for targeted cancer therapy. Cancers (Basel). 12, 940 (2020).

    Google Scholar 

  83. Xiao, T., Hu, W., Fan, Y., Shen, M. & Shi, X. Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy. Theranostics 11, 7057–7071 (2021).

    Google Scholar 

  84. Wu, I. Y., Bala, S. & Škalko-Basnet, N. Cagno, M. P. Interpreting non-linear drug diffusion data: utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci. 138, 105026 (2019). di.

    Google Scholar 

  85. Zhai, J. et al. In vitro and in vivo toxicity and biodistribution of Paclitaxel-Loaded cubosomes as a drug delivery nanocarrier: A case study using an A431 skin cancer xenograft model. ACS Appl. Bio Mater. 3, 4198–4207 (2020).

    Google Scholar 

  86. Batool, S. et al. Development and statistical optimization of camptothecin loaded hyaluronic acid and zein polymeric nanoparticles towards the treatment of melanoma. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2025.146330 (2025).

    Google Scholar 

  87. Saleem, A. et al. Development and evaluation of regorafenib loaded liquid suppository for rectal delivery: in vitro, in vivo analyses. J. Drug Deliv Sci. Technol. 91, 105239 (2024).

    Google Scholar 

  88. Alfagih, I. M. et al. Cubosomes dispersions as enhanced indomethacin oral delivery systems: in vitro and stability evaluation. J. Pharm. Res. Int. 33, 24–35 (2021).

    Google Scholar 

  89. Yasser, M., Teaima, M., El-Nabarawi, M. & El-Monem, R. A. Cubosomal based oral tablet for controlled drug delivery of telmisartan: formulation, in-vitro evaluation and in-vivo comparative pharmacokinetic study in rabbits.. Drug Dev. Ind. Pharm. 45, 981–994 (2019).

    Google Scholar 

  90. Malik, M. et al. Palbociclib- and regorafenib-loaded nanomicelles for the treatment of non-small cell lung cancer: Pharmacokinetic and antitumor evaluations. J. Pharm. Investig. https://doi.org/10.1007/s40005-025-00753-7 (2025).

    Google Scholar 

  91. Yan, H. et al. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat. Commun. 14, 2756 (2023).

    Google Scholar 

  92. Ibrahim, H. A. et al. Baicalein prevents capecitabine-induced heart damage in female Wistar rats and enhances its anticancer potential in MCF-7 breast cancer cells. Life Sci. 319, 121523 (2023).

    Google Scholar 

  93. Zhou, Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv. 27, 1319–1328 (2020).

    Google Scholar 

Download references