References
-
Kovic, M. Risks of space colonization. Futures 126, 102638 (2021).
-
Caporale, A. G. et al. How to make the Lunar and Martian soils suitable for food production-Assessing the changes after manure addition and implications for plant growth. J. Environ. Manag. 325, 116455 (2023).
-
Kasiviswanathan, P., Swanner, E. D., Halverson, L. J. & Vijayapalani, P. Farming on Mars: treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 17, e0272209 (2022).
-
Eichler, A. et al. Challenging the agricultural viability of Martian regolith simulants. Icarus 354, 114022 (2021).
-
Häder, D. P. & Hemmersbach, R. Gravitaxis in Euglena. Adv. Exp. Med Biol. 979, 237–266 (2017).
-
Takahashi, K. et al. Gravity sensing in plant and animal cells. npj Microgravity 7, 1–10 (2021).
-
Acres, J. M., Youngapelian, M. J. & Nadeau, J. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. npj Microgravity 7, 7 (2021).
-
Medina, F. J., Manzano, A., Villacampa, A., Ciska, M. & Herranz, R. Understanding reduced gravity effects on early plant development before attempting life-support farming in the Moon and Mars. Front. Astron. Space Sci. 8, 729154 (2021).
-
Wuest, S. L., Stern, P., Casartelli, E. & Egli, M. Fluid Dynamics appearing during simulated microgravity using random positioning machines. PLoS One 12, e0170826 (2017).
-
Revellame, E. D. et al. Microalgae in bioregenerative life support systems for space applications. Algal Res 77, 103332 (2024).
-
Fais, G. et al. Wide range applications of spirulina: from Earth to space missions. Mar. Drugs 20, 299 (2022).
-
Miyajima, H. Self-Sustainable Smart City Design on the Red Planet. https://hdl.handle.net/2346/84928 (2019).
-
Abney, M., Sanders, J. & Perry, J. A Discussion of Integrated Life Support and In Situ Resource Utilization Architectures for Mars Surface Missions. In 48th International Conference on Environmental Systems (48th International Conference on Environmental Systems, 2018).
-
Miyajima, H. Life support system trade study for SpaceX Mars mission. In 47th International Conference on Environmental Systems (2017).
-
Montague, M. et al. Therole of synthetic biology for in situ resource utilization (ISRU). Astrobiology 12, 1135-42 https://doi.org/10.1089/ast.2012.0829 (2012).
-
Afshinnekoo, E. et al. Fundamental biological features of spaceflight: advancing the field to enable deep space exploration. Cell 183, 1162 (2020).
-
Cao, G. et al. Process and kit to investigate microgravity effect on animal/vegetable cells under extraterrestrial cultivation conditions and cultivation process thereof to sustain manned space missions – Google Patents. (Google, 2021).
-
Fais, G., Manca, A., Concas, A., Pantaleo, A. & Cao, G. A novel process to grow edible microalgae on Mars by exploiting in situ-available resources: experimental investigation. Acta Astronaut 201, 454–463 (2022).
-
Mills, W. R. & Pierson, D. L. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity. (NASA, 2000).
-
Mohon, L. Artemis I. I. I.: NASA’s First Human Mission to the Lunar South Pole – NASA. https://www.nasa.gov/missions/artemis/artemis-iii/ (NASA, 2023).
-
De Micco, V. et al. Plant and microbial science and technology as cornerstones to bioregenerative life support systems in space. npj Microgravity 9, 1–12 (2023).
-
Cao, G. et al. Recent advances on ISRU technologies and study of microgravity impact on blood cells for deep space exploration. Front. Space Technol. 4, 1146461 (2023).
-
Williamson, J., Wilson, J. P., Robinson, K. & Luong, H. Status of ISS water management and recovery. (NASA, 2023).
-
ESA Annual Report 2019. www.esa.int (ESA, 2021).
-
Wheeler, R. M. et al. Crop production for advanced life support systems-observations from the Kennedy Space Center Breadboard Project (2003).
-
Fahrion, J., Mastroleo, F., Dussap, C. G. & Leys, N. Use of Photobioreactors in regenerative life support systems for human space exploration. Front Microbiol 12, 699525 (2021).
-
Maurício, T. et al. Differences and similarities in lipid composition, nutritional value, and bioactive potential of four edible chlorella vulgaris strains. Foods 12, 1625 (2023).
-
Dolganyuk, V. et al. Microalgae: a promising source of valuable bioproducts. Biomolecules 10, 1–24 (2020).
-
Verseux, C. et al. Sustainable life support on Mars: the potential roles of cyanobacteria. Int J. Astrobiol. 15, 65–92 (2019).
-
Niederwieser, T., Kociolek, P. & Klaus, D. A review of algal research in space. Acta Astronaut 146, 359–367 (2018).
-
Li, M. et al. Chlorella vulgaris culture as a regulator of CO2 in a bioregenerative life support system. Adv. Space Res. 52, 773–779 (2013).
-
Detrell, G. Chlorella vulgaris photobioreactor for oxygen and food production on a moon base—potential and challenges. Front. Astron. Space Sci. 8, 700579 (2021).
-
Ferreira, V. et al. Chlorella vulgaris as a model organism for microgravity cultivation in a cubesat. Iran. J. Energy Environ. 12, 18–22 (2021).
-
Niederwieser, T., Kociolek, P. & Klaus, D. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications. Life Sci. Space Res. 16, 8–17 (2018).
-
Torres-Tiji, Y., Fields, F. J. & Mayfield, S. P. Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020).
-
Abreu, A. P., Martins, R. & Nunes, J. Emerging applications of chlorella sp. and spirulina (Arthrospira) sp. Bioengineering 10, 955 (2023).
-
Sakarika, M. & Kornaros, M. Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 273, 237–243 (2019).
-
Mallick, N., Mandal, S., Singh, A. K., Bishai, M. & Dash, A. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87, 137–145 (2012).
-
Casula, M. et al. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine. Life Sci. Space Res (Amst.) 42, 108–116 (2024).
-
Ellena, G. et al. Development and implementation of a simulated microgravity setup for edible cyanobacteria. npj Microgravity 10, 1–14 (2024).
-
Häder, D. On the Way to Mars—flagellated algae in bioregenerative life support systems under microgravity conditions. Front Plant Sci. 10, 498707 (2020).
-
Preu, P. & Braun, M. German SIMBOX on Chinese mission Shenzhou-8: Europe’s first bilateral cooperation utilizing China’s Shenzhou programme. Acta Astronaut 94, 584–591 (2014).
-
Popova, A. F. Comparative characteristic of mitochondria ultrastructural organization in Chlorella cells under altered gravity conditions. Adv. Space Res. 31, 2253–2259 (2003).
-
Li, G., Wang, G., Song, L. & Liu, Y. Lipid peroxidation in microalgae cells under simulated microgravity. Space Med. Eng. 15, 270–272 (2002).
-
Li, G. B., Liu, Y. D., Wang, G. H. & Song, L. R. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity. Acta Astronaut 55, 953–957 (2004).
-
Hauslage, J. et al. Eu:CROPIS – “Euglena gracilis: combined regenerative organic-food production in space” – a space experiment testing biological life support systems under lunar and Martian gravity. Microgravity Sci. Technol. 30, 933–942 (2018).
-
Detrell, G., Verseux, C. & Trigo-Rodríguez, J. M. Chlorella vulgaris photobioreactor for oxygen and food production on a moon base-potential and challenges. 8, 700579 (2021).
-
Santomartino, R. et al. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14, 1–11 (2023).
-
Mendes, A. R., Spínola, M. P., Lordelo, M. & Prates, J. A. M. Advances in bioprocess engineering for optimising chlorella vulgaris fermentation: biotechnological innovations and applications. Foods 13, 4154 (2024).
-
Wuest, S. L., Richard, S., Kopp, S., Grimm, D. & Egli, M. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed. Res. Int. 2015, 971474 (2015).
-
Borst, A. G. & Van Loon, J. J. W. A. Technology and developments for the random positioning machine, RPM. Microgravity Sci. Technol. 21, 287–292 (2009).
-
Shekh, A., Sharma, A., Schenk, P. M., Kumar, G. & Mudliar, S. Microalgae cultivation: photobioreactors, CO2 utilization, and value-added products of industrial importance. J. Chem. Technol. Biotechnol. 97, 1064–1085 (2022).
-
Popova, A. F. Structural featuses of Chlorella cells cultured for one year under the conditions of space flight. Tsitologiya i Genetika 31, 3–9 (1997).
-
Popova, A. & Shniukova, E. Ultrastructure of chloroplasts and activity of amylases in Chlorella cells during space flight. Tsitol Genet. 29, 41–45 (1995).
-
Popova, A. F., Kordyum, E. L., Shnyukova, E. I., & Sytnik, K. M. Plastid ultrastructure, fractional composition and activity ofamylases in Chlorella cells in microgravity. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 2, P159-160 (1995).
-
Popova, A. F. et al. Ultrastructural and growth indices of Chlorella culture in multicomponent aquatic systems under space flight conditions. Adv. Space Res. 9, 79–82 (1989).
-
Wu, Q. et al. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch. Toxicol. 90, 1817–1840 (2016).
-
Rezayian, M., Niknam, V. & Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 6, 1309–1313 (2019).
-
Wang, C. A., Onyeaka, H., Miri, T. & Soltani, F. Chlorella vulgaris as a food substitute: applications and benefits in the food industry. J. Food Sci. 89, 8231 (2024).
-
Martemucci, G. et al. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2, 48–78 (2022).
-
Pérez-gálvez, A., Viera, I. & Roca, M. Carotenoids and chlorophylls as. Antioxid. Antioxid. 9, 505 (2020).
-
Grune, T. et al. β-carotene is an important vitamin A source for humans. J. Nutr. 140, 2268S–2285S (2010).
-
Dixit, J., Jagtap, S., Kulkarni, G. & Vidyasagar, P. B. Effects of Simulated Microgravity On Growth, Physiology And Photosynthetic Machinery In Synechocystis sp. PCC 6803. cosp 42, F4.4-4-18 (2018).
-
Begum, H., Yusoff, F. M. D., Banerjee, S., Khatoon, H. & Shariff, M. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr. 56, 2209–2222 (2016).
-
Chen, B. et al. Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products–A review. Bioresour. Technol. 244, 1198–1206 (2017).
-
Calabrese, E. J. et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol. Appl Pharm. 222, 122–128 (2007).
-
Guardini, Z. et al. High carotenoid mutants of Chlorella vulgaris show enhanced biomass yield under high irradiance. Plants 10, 911 (2021).
-
Fais, G. et al. Cultivation of chroococcidiopsis thermalis using available in situ resources to sustain. Life Mars. Life 14, 251 (2024).
-
Casula, M. et al. Impact of low-dose X-ray radiation on the lipidome of Chlorella vulgaris. Algal Res. 84, 103783 (2024).
-
Zuluaga, M., Gueguen, V., Pavon-Djavid, G. & Letourneur, D. Carotenoids from microalgae to block oxidative stress. Bioimpacts 7, 1 (2017).
-
Morales, M., Aflalo, C. & Bernard, O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplanktonspecies. Biomass and Bioenergy 150, 106108 https://doi.org/10.1016/j.biombioe.2021.106108 (2021).
-
Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: a mini review. Chem. Ecol. 36, 174–193 (2020).
-
Dakkumadugula, A. et al. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: a review. Food Chem. X 20, 100875 (2023).
-
Goiris, K. et al. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl Phycol. 24, 1477–1486 (2012).
-
Xie, T., Xia, Y., Zeng, Y., Li, X. & Zhang, Y. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga chlorella vulgaris: over-compensation strategy. Bioresour. Technol. 233, 247–255 (2017).
-
Ratomski, P. & Hawrot-paw, M. Influence of nutrient-stress conditions on chlorella vulgaris biomass production and lipid content. Catalysts 11, 573 (2021).
-
DDa Costa, E., Silva, J., Mendonca, S. H., Abreu, M. H. & Domingues, M. R. Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs 14, 101 https://doi.org/10.3390/md14050101 (2016).
-
Widzgowski, J. et al. High light induces species specific changes in the membrane lipid composition of Chlorella. Biochem. J. 477, 2543–2559 (2020).
-
Tang, H., Rising, H. H., Majji, M. & Brown, R. D. Long-term space nutrition: a scoping review. Nutrients 14, 194 (2021).
-
Smith, S. M., Davis-Street, J., Neasbitt, L., Zwart Illustrations, S. R. & Zambetti, M. Space nutrition. (NASA, 2012).
-
Rittenschober. FAO/INFOODS Guidelines Guidelines for Converting Units, Denominators and Expressions Version 1.0. (FAO, 2012).
-
NASA. Nutrition Requirements, Standards, and Operating Bands for Exploration Missions. (NASA, 2005).
-
Sato, N. Roles of the acidic lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol in photosynthesis: their specificity and evolution. J. Plant Res. 117, 495–505 (2004).
-
Nakajima, Y. et al. Thylakoid membrane lipid sulfoquinovosyl-diacylglycerol (SQDG) is required for full functioning of photosystem II in Thermosynechococcus elongatus. J. Biol. Chem. 293, 14786–14797 (2018).
-
Wada, H. & Murata, N. Membrane Lipids in Cyanobacteria. Lipids in Photosynthesis: Structure, Function and Genetics 65–81 https://doi.org/10.1007/0-306-48087-5_4 (1998).
-
He, M., Qin, C. X., Wang, X. & Ding, N. Z. Plant unsaturated fatty acids: biosynthesis and regulation. Front. Plant Sci. 11, 511331 (2020).
-
Marangoni, F. et al. Dietary linoleic acid and human health: focus on cardiovascular and cardiometabolic effects. Atherosclerosis 292, 90–98 (2020).
-
Borowitzka, M. A. Algal physiology and large-scale outdoor cultures of microalgae. Physiology of Microalgae 601–652 https://doi.org/10.1007/978-3-319-24945-2_23 (2016).
-
Mimouni, V., Couzinet-Mossion, A., Ulmann, L. & Wielgosz-Collin, G. Lipids from microalgae. Microalgae in Health and Disease Prevention 109–131 https://doi.org/10.1016/B978-0-12-811405-6.00005-0 (2018).
-
Sarmistha, N. Effect of simulated microgravity on growth, morphological and biochemical properties of chlorella pyrenoidosa. (The University of Houston Clear Lake, 2001).
-
Kong, F., Romero, I. T., Warakanont, J. & Li-Beisson, Y. Lipid catabolism in microalgae. N. Phytol. 218, 1340–1348 (2018).
-
Cecchin, M. et al. CO2 supply modulates lipid remodelling, photosynthetic and respiratory activities in Chlorella species. Plant Cell Environ. 44, 2987–3001 (2021).
-
Roessler, P. G. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26, 393–399 (1990).
-
Goncalves, E., Johnson, J. & Rathinasabapathi, B. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29 on JSTOR. Planta 238, 895–906 (2013).
-
Klok, A. J., Martens, D. E., Wijffels, R. H. & Lamers, P. P. Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour. Technol. 134, 233–243 (2013).
-
Holub, B. J. The nutritional significance, metabolism, and function of myo-inositol and phosphatidylinositol in health and disease. Adv. Nutr. Res. 4, 107–141 (1982).
-
Hernández, M. L., Jiménez-López, J., Cejudo, F. J. & Pérez-Ruiz, J. M. 2-Cys peroxiredoxins contribute to thylakoid lipid unsaturation by affecting ω-3 fatty acid desaturase 8. Plant Physiol. 195, 1521 (2024).
-
Ge, S. et al. Dynamic and adaptive membrane lipid remodeling in leaves of sorghum under salt stress. Crop J. 10, 1557–1569 (2022).
-
Smith, S. M., Zwart, S. R., Douglas, G. L. & Heer, M. Human adaptation to spaceflight: the role of food and nutrition. National Aeronautics and Space Administration vol. 135 (NASA, 2014).
-
Häder, D. P., Braun, M., Grimm, D. & Hemmersbach, R. Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. npj Microgravity 3, 1–8 (2017).
-
van Loon, J. J. W. A. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 39, 1161–1165 (2007).
-
Hasenstein, K. H. & van Loon, J. J. W. A. Clinostats and other rotating systems-design, function, and limitations. Generation and Applications of Extra-Terrestrial Environments on Earth 147–156 https://doi.org/10.1201/9781003338277-17/CLINOSTATS-ROTATING-SYSTEMS (2015).
-
Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1 (2013).
-
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).
-
Chen, Y. & Vaidyanathan, S. Simultaneous assay of pigments, carbohydrates, proteins and lipids in microalgae. Anal. Chim. Acta 776, 31–40 (2013).
-
Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).
-
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. Protein measurement with the Folin phenol reagent – PubMed. J. Biol. Chem. 193, 265–275 (1951).
-
Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89, 27–41 (2006).
-
Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994).
-
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).
-
Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 28, 25–30 (1995).
-
Folch, J., Lees, M. & Sloane stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
-
Sud, M. et al. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucleic Acids Res 44, D463–D470 (2016).
-
Li, Y. et al. Simultaneous structural identification of diacylglyceryl-N-trimethylhomoserine (DGTS) and diacylglycerylhydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) in microalgae using dual Li + /H+ adduct ion mode by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 31, 457–468 (2017).
-
Murphy, R. C. Tandem Mass Spectrometry of Lipids. Tandem Mass Spectrometry of Lipids (Royal Society of Chemistry, https://doi.org/10.1039/9781782626350 (2014).
-
Han, X. Lipidomics: Comprehensive Mass Spectrometry of Lipids. Lipidomics: Comprehensive Mass Spectrometry of Lipids. https://doi.org/10.1002/9781119085263 (2016).
-
Granafei, S., Losito, I., Palmisano, F. & Cataldi, T. R. I. Unambiguous regiochemical assignment of sulfoquinovosyl mono- and diacylglycerols in parsley and spinach leaves by liquid chromatography/electrospray ionization sequential mass spectrometry assisted by regioselective enzymatic hydrolysis. Rapid Commun. Mass Spectrom. 31, 1499–1509 (2017).
-
Hong, M. Y. et al. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23, 1919–1926 (2002).
-
Narayanan, S., Prasad, P. V. V. & Welti, R. Alterations in wheat pollen lipidome during high day and night temperature stress. Plant Cell Environ. 41, 1749–1761 (2018).
-
Bychkov, A., Reshetnikova, P., Bychkova, E., Podgorbunskikh, E. & Koptev, V. The current state and future trends of space nutrition from a perspective of astronauts’ physiology. Int J. Gastron Food Sci. 24, 100324 (2021).
