Network pharmacology and molecular docking reveal antiviral mechanisms of silver nanoparticles synthesized by Oscillatoria sp. against HCV pathogenesis

network-pharmacology-and-molecular-docking-reveal-antiviral-mechanisms-of-silver-nanoparticles-synthesized-by-oscillatoria-sp.-against-hcv-pathogenesis
Network pharmacology and molecular docking reveal antiviral mechanisms of silver nanoparticles synthesized by Oscillatoria sp. against HCV pathogenesis

References

  1. Abdelaleem, E. R. et al. NS3 helicase inhibitory potential of the marine sponge Spongia irregularis. RSC Adv 12, 2992–3002. https://doi.org/10.1039/d1ra08321j (2022).

    Google Scholar 

  2. Shady, N. H. et al. Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling. Int J Nanomedicine 15, 3377–3389. https://doi.org/10.2147/IJN.S233766 (2020).

    Google Scholar 

  3. Said, A. A. E. et al. NS3/4A helicase inhibitory alkaloids from Aptenia cordifolia as HCV target. RSC Adv. 11, 32740–32749. https://doi.org/10.1039/D1RA06139A (2021).

    Google Scholar 

  4. Di Stasio, D. et al. Hepatitis C Virus (HCV) infection: Pathogenesis, oral manifestations, and the Role of Direct-Acting Antiviral therapy: A Narrative review. Journal of Clinical Medicine 13 (2024).

  5. Inzaule, S. et al. Prevalence of Drug Resistance Associated Substitutions in Persons With Chronic Hepatitis C Infection and Virological Failure Following Initial or Re-treatment With Pan-genotypic Direct-Acting Antivirals: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 79, 1437–1446. https://doi.org/10.1093/cid/ciae431 (2024).

    Google Scholar 

  6. Stanciu, C. et al. An update on direct antiviral agents for the treatment of hepatitis C. Expert Opin. Pharmacother. 22, 1729–1741 (2021).

    Google Scholar 

  7. Stanciu, C. & Trifan, A. Hepatitis C virus treatment revolution: Eastern European story. Hepat. Mon. 15, e28969 (2015).

    Google Scholar 

  8. Elberry, M. H., Darwish, N. H. & Mousa, S. A. Hepatitis C virus management: Potential impact of nanotechnology. Virology Journal 14, 1–10 (2017).

    Google Scholar 

  9. Gamkrelidze, I. et al. Progress towards hepatitis C virus elimination in high-income countries: An updated analysis. Liver Int. 41, 456–463 (2021).

    Google Scholar 

  10. Singh, L., Kruger, H. G., Maguire, G. E., Govender, T. & Parboosing, R. The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease 4, 105–131 (2017).

    Google Scholar 

  11. Abd Ellah, N. H., Tawfeek, H. M., John, J. & Hetta, H. F. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine 14, 1471–1491 (2019).

  12. Singh, U. et al. Cyanometabolites: Molecules with immense antiviral potential. Arch. Microbiol. 205, 164 (2023).

    Google Scholar 

  13. Nair, S. & Bhimba, B. V. Bioactive potency of cyanobacteria Oscillatoria spp. Int J Pharm Pharm Sci 5, 611–612 (2013).

    Google Scholar 

  14. Elsayed, K. N. M., Kolesnikova, T. A., Noke, A. & Klock, G. Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech 7, 41, https://doi.org/10.1007/s13205-017-0677-x (2017).

  15. Touliabah, H. E. & Refaay, D. A. Enhancement of Anticancer, Antibacterial, and Acetylcholinesterase Inhibition Activities from Oscillatoria sancta under Starvation Conditions. Water 15, 664. https://doi.org/10.3390/w15040664 (2023).

    Google Scholar 

  16. KP, D. D. & Thajudin, N. Biofilm inhibitory potential of Oscillatoria tenuis against Candida albicans. Deepa KP, Thajuddin N. Biofilm inhibitory potential of Oscillatoria tenuis against Candida albicans. Plant Science Today 10, 422–429, 10.14719/ (2023).

  17. Haris, M. et al. Oscillatoria limnetica mediated green synthesis of iron oxide (Fe2O3) nanoparticles and their diverse in vitro bioactivities. Molecules 28, 2091 (2023).

    Google Scholar 

  18. Bishoyi, A. K., Mandhata, C. P., Sahoo, C. R., Paidesetty, S. K. & Padhy, R. N. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. Naunyn-Schmiedeberg’s Arch. Pharmacol. 397, 1347–1375 (2024).

    Google Scholar 

  19. Nainangu, P. et al. In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatalysis and Agricultural Biotechnology 29, 101772, https://doi.org/10.1016/j.bcab.2020.101772 (2020).

  20. Pang, Y., Xu, H. & Pei, H. Using N-TiO2 to enhance the coagulation of Oscillatoria sp. and subsequently degrade cells and their metabolites in sludge under visible light. Journal of Water Process Engineering 53, 103666, https://doi.org/10.1016/j.jwpe.2023.103666 (2023).

  21. Parida, S., Dash, S., Sahoo, B. & Rath, B. Assessment of Antimicrobial and Antioxidant Potential of Oscillatoria sancta and Oscillatoria proteus Isolated from Chilika Lake. Curr. Microbiol. 81, 46 (2024).

    Google Scholar 

  22. Zainuddin, E. N., Mundt, S., Wegner, U. & Mentel, R. Cyanobacteria a potential source of antiviral substances against influenza virus. Med Microbiol Immunol 191, 181–182. https://doi.org/10.1007/s00430-002-0142-1 (2002).

    Google Scholar 

  23. Borah, D. et al. A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity. Materials Today Communications 34, 105110 (2023).

    Google Scholar 

  24. Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch Microbiol 202, 213–223. https://doi.org/10.1007/s00203-019-01734-9 (2020).

    Google Scholar 

  25. Mazur-Marzec, H., Cegłowska, M., Konkel, R. & Pyrć, K. Antiviral cyanometabolites—a review. Biomolecules 11, 474 (2021).

    Google Scholar 

  26. Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbiol. 202, 213–223 (2020).

    Google Scholar 

  27. Agu, I., José, I. R. & Díaz-Muñoz, S. L. Influenza A defective viral genome production is altered by metabolites, metabolic signaling molecules, and cyanobacteria extracts. bioRxiv, 10.1101%2F2024.07.04.602134 (2024).

  28. Nazmul, T. et al. Capture and neutralization of SARS-CoV-2 and influenza virus by algae-derived lectins with high-mannose and core fucose specificities. Microbiol. Immunol. 67, 334–344 (2023).

    Google Scholar 

  29. Ali, A. A., Maher, F. T. & Al-Bajari, S. A. Green biosynthesis of silver nanoparticles from Taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells. Journal of Hygienic Engineering & Design 42 (2023).

  30. Kulkarni, N. & Muddapur, U. Biosynthesis of metal nanoparticles: A review. Journal of Nanotechnology 2014, 510246. https://doi.org/10.1155/2014/510246 (2014).

    Google Scholar 

  31. Bishoyi, A. K., Mandhata, C. P., Sahoo, C. R., Paidesetty, S. K. & Padhy, R. N. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. Naunyn Schmiedebergs Arch Pharmacol 397, 1347–1375. https://doi.org/10.1007/s00210-023-02719-8 (2024).

    Google Scholar 

  32. Omar, R. et al. The contribution of cyanobacteria in the development of nanobiotechnology: A mini-review. International Aquatic Research, -, https://doi.org/10.22034/iar.2024.2006079.1593 (2024).

  33. Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 101108 (2023).

  34. Sharif, M. S. et al. Biofabrication of Fe(3)O(4) Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and Their Antibacterial Applications. Molecules 28, 3403. https://doi.org/10.3390/molecules28083403 (2023).

    Google Scholar 

  35. Altammar, K. A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622 (2023).

    Google Scholar 

  36. Nguyen, N. P. U., Dang, N. T., Doan, L. & Nguyen, T. T. H. Synthesis of silver nanoparticles: From conventional to ‘modern’methods—a review. Processes 11, 2617. https://doi.org/10.3390/pr11092617 (2023).

    Google Scholar 

  37. Ali, A. A., Maher, F. T. & Al-Bajari, S. A. Green biosynthesis of silver nanoparticles from Taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells. Journal of Hygienic Engineering & Design 42, 361–369 (2023).

    Google Scholar 

  38. Rizwana, H. et al. Green biosynthesis of silver nanoparticles using Vaccinium oxycoccos (Cranberry) extract and evaluation of their biomedical potential. Crystals 13, 294. https://doi.org/10.3390/cryst13020294 (2023).

    Google Scholar 

  39. Fathy, W. et al. Biosynthesis of silver nanoparticles from synechocystis sp to be used as a flocculant agent with different microalgae strains. Current Nanomaterials 5, 175–187. https://doi.org/10.2174/2468187310999200605161200 (2020).

    Google Scholar 

  40. Vijayaram, S. et al. Applications of green synthesized metal nanoparticles—a review. Biol. Trace Elem. Res. 202, 360–386 (2024).

    Google Scholar 

  41. Kamal, M. et al. In vitro assessment of antimicrobial, anti-inflammatory, and schistolarvicidal activity of macroalgae-based gold nanoparticles. Front. Mar. Sci. 9, 1075832. https://doi.org/10.3389/fmars.2022.1075832 (2022).

    Google Scholar 

  42. Azmy, L. et al. Antimicrobial Activity of Arthrospira platensis-Mediated Gold Nanoparticles against Streptococcus pneumoniae: A Metabolomic and Docking Study. Int. J. Mol. Sci. 25, 10090. https://doi.org/10.3390/ijms251810090 (2024).

    Google Scholar 

  43. Terefe, E. M. & Ghosh, A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights 16, 11779322221125604. https://doi.org/10.1177/11779322221125605 (2022).

    Google Scholar 

  44. Hussain, S. A. et al. Synergistic effects of copper oxide-stigmasterol nanoparticles: A novel therapeutic strategy for oral pathogen biofilms and oral cancer. Mater. Technol. 40, 2476999. https://doi.org/10.1080/10667857.2025.2476999 (2025).

    Google Scholar 

  45. Rafi Shaik, M. et al. Dual Action of Nanostructured α-Mangostin-Copper Oxide Complexes Against Dental Pathogen Biofilms and Oral Cancer via Apoptosis Gene Modulation. Chem. Biodivers. 22, e202401961. https://doi.org/10.1002/cbdv.202401961 (2025).

    Google Scholar 

  46. Kaushal, A. et al. Advances in therapeutic applications of silver nanoparticles. Chem. Biol. Interact. 382, 110590 (2023).

    Google Scholar 

  47. Ren, Y., Zhang, Y. & Li, X. Application of AgNPs in biomedicine: An overview and current trends. Nanotechnol. Rev. 13, 20240030. https://doi.org/10.1515/ntrev-2024-0030 (2024).

    Google Scholar 

  48. Abdel Azeem, M. N., Hassaballa, S., Ahmed, O. M., Elsayed, K. N. & Shaban, M. Photocatalytic activity of revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa’s bio-capped silver nanoparticles for industrial wastewater treatment. Nanomaterials 11, 3241. https://doi.org/10.3390/nano11123241 (2021).

    Google Scholar 

  49. Burdușel, A. C. et al. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials (Basel) 8, https://doi.org/10.3390/nano8090681 (2018).

  50. Mohamed, A., Dayo, M., Alahmadi, S. & Ali, S. Anti-Inflammatory and Antimicrobial Activity of Silver Nanoparticles Green-Synthesized Using Extracts of Different Plants. Nanomaterials 14, 1383 (2024).

    Google Scholar 

  51. Chahardoli, A., Qalekhani, F., Hajmomeni, P., Shokoohinia, Y. & Fattahi, A. Enhanced hemocompatibility, antimicrobial and anti-inflammatory properties of biomolecules stabilized AgNPs with cytotoxic effects on cancer cells. Sci. Rep. 15, 1186. https://doi.org/10.1038/s41598-024-82349-z (2025).

    Google Scholar 

  52. Casals, E., Gusta, M. F., Bastus, N., Rello, J. & Puntes, V. Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections. Microorganisms 13, 952 (2025).

    Google Scholar 

  53. Dudhagara, P. et al. Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications. Processes 10, 623 (2022).

    Google Scholar 

  54. Hashem, A. H. et al. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. Journal of Functional Biomaterials 13, 242 (2022).

    Google Scholar 

  55. Abass Sofi, M., Sunitha, S., Ashaq Sofi, M., Khadheer Pasha, S. K. & Choi, D. An overview of antimicrobial and anticancer potential of silver nanoparticles. Journal of King Saud University – Science 34, 101791. https://doi.org/10.1016/j.jksus.2021.101791 (2022).

    Google Scholar 

  56. Beyene, H. D., Werkneh, A. A., Bezabh, H. K. & Ambaye, T. G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001 (2017).

    Google Scholar 

  57. Chen, L. & Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl 112, 110924. https://doi.org/10.1016/j.msec.2020.110924 (2020).

    Google Scholar 

  58. Khandelwal, N., Kaur, G., Kumar, N. & Tiwari, A. APPLICATION OF SILVER NANOPARTICLES IN VIRAL INHIBITION: A NEW HOPE FOR ANTIVIRALS. Digest Journal of Nanomaterials & Biostructures (DJNB) 9 (2014).

  59. Uthaman, A., Lal, H. M. & Thomas, S. Fundamentals of silver nanoparticles and their toxicological aspects. Polymer Nanocomposites Based on Silver Nanoparticles: Synthesis, Characterization and Applications, 1–24, https://doi.org/10.1007/978-3-030-44259-0_1 (2021).

  60. Ahmad, A. et al. Biological synthesis of silver nanoparticles and their medical applications. World Academy of Sciences Journal 6, 1–9. https://doi.org/10.3892/wasj.2024.237 (2024).

    Google Scholar 

  61. Omar, R., Ibraheem, I., Hassan, S. & Elsayed, K. N. Biogenic Synthesis of Different forms of Bio-caped Silver Nanoparticles using Microcystis sp. and its Antimicrobial Activity. Current Nanoscience 19, 850–862, https://doi.org/10.2174/1573413719666230202122334 (2023).

  62. Ghosh, U., Sayef Ahammed, K., Mishra, S. & Bhaumik, A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 17, e202101149. https://doi.org/10.1002/asia.202101149 (2022).

    Google Scholar 

  63. Abou El-Nour, K. M., Eftaiha, A. a., Al-Warthan, A. & Ammar, R. A. Synthesis and applications of silver nanoparticles. Arabian journal of chemistry 3, 135–140, https://doi.org/10.1016/j.arabjc.2010.04.008 (2010).

  64. Ismail, G. A., El-Sheekh, M. M., Samy, R. M. & Gheda, S. F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience 11, 355–370. https://doi.org/10.1007/s12668-021-00828-3 (2021).

    Google Scholar 

  65. Elumalai, D., Hemavathi, M., Deepaa, C. V. & Kaleena, P. K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2, 15–26. https://doi.org/10.1016/j.parepi.2017.09.001 (2017).

    Google Scholar 

  66. Lin, Z. et al. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 7, 742–750. https://doi.org/10.1039/C6RA25010F (2017).

    Google Scholar 

  67. Li, Y. et al. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS Appl Mater Interfaces 8, 24385–24393. https://doi.org/10.1021/acsami.6b06613 (2016).

    Google Scholar 

  68. Kumar, S. D. et al. Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential. Journal of Cluster Science 28, 359–367, https://doi.org/10.1007/s10876-016-1100-1 (2017)

  69. Haggag, E. G. et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomedicine 14, 6217–6229. https://doi.org/10.2147/IJN.S214171 (2019).

    Google Scholar 

  70. Zhang, R. et al. Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. Nanomedicine 13, 1041–1050. https://doi.org/10.1016/j.nano.2016.11.013 (2017).

    Google Scholar 

  71. Saad, M. H., El-Fakharany, E. M., Salem, M. S. & Sidkey, N. M. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210. 1. Journal of Biomolecular Structure and Dynamics 40, 3560–3580 (2022).

  72. Luceri, A., Francese, R., Lembo, D., Ferraris, M. & Balagna, C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms 11, 629 (2023).

    Google Scholar 

  73. Saad, M. H., El-Fakharany, E. M., Salem, M. S. & Sidkey, N. M. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 40, 3560–3580, https://doi.org/10.1080/07391102.2020.1848632 (2022).

  74. Carbone, D. A., Pellone, P., Lubritto, C. & Ciniglia, C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 10, 746, https://doi.org/10.3390/antibiotics10060746 (2021).

  75. Singh, U. et al. Cyanometabolites: molecules with immense antiviral potential. Arch Microbiol 205, 164. https://doi.org/10.1007/s00203-023-03514-y (2023).

    Google Scholar 

  76. Zuorro, A. et al. Enhancement of phycobiliprotein accumulation in thermotolerant Oscillatoria sp. through media optimization. ACS omega 6, 10527–10536 (2021).

  77. Żymańczyk-Duda, E., Samson, S. O., Brzezińska-Rodak, M. & Klimek-Ochab, M. Versatile applications of cyanobacteria in biotechnology. Microorganisms 10, 2318 (2022).

    Google Scholar 

  78. Kumar, B. N. P., Mahaboobi, S. & Satyam, S. Cyanobacteria: A potential natural source for drug discovery and bioremediation. J. Ind. Pollut. Control 32, 508–517 (2016).

    Google Scholar 

  79. Bar-On, Y. et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med 24, 1701–1707. https://doi.org/10.1038/s41591-018-0186-4 (2018).

    Google Scholar 

  80. Kigondu, E. V. M. et al. Antiplasmodial and cytotoxicity activities of some selected plants used by the Maasai community. Kenya. South African Journal of Botany 77, 725–729. https://doi.org/10.1016/j.sajb.2011.03.008 (2011).

    Google Scholar 

  81. Liu, X. et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 38, W609–W614 (2010).

    Google Scholar 

  82. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).

    Google Scholar 

  83. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).

    Google Scholar 

  84. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Google Scholar 

  85. Youssif, K. A. et al. Cytotoxic potential of green synthesized silver nanoparticles of lampranthus coccineus extracts, metabolic profiling and molecular docking study. ChemistrySelect 5, 12278–12286. https://doi.org/10.1002/slct.202002947 (2020).

    Google Scholar 

  86. Mostafa, E. M., Badr, Y., Hashem, M., Abo-EL-Sooud, K. & Faid, A. H. Reducing the effective dose of doxycycline using chitosan silver nanocomposite as a carriers on gram positive and gram-negative bacteria. Sci. Rep. 14, 27819 (2024).

    Google Scholar 

  87. Sharifi-Rad, M., Elshafie, H. S. & Pohl, P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf extract: Their bio-pharmaceutical and catalytic properties. J. Photochem. Photobiol., A 448, 115318. https://doi.org/10.1016/j.jphotochem.2023.115318 (2024).

    Google Scholar 

  88. Nainangu, P., K , K., Subramanian, K., Gopal, S. & Antonyraj, A. P. M. Characterization of Bioactive Metabolites in Phormidium sp. PB21: Pigment Production, Antimicrobial Potential, and Toxicity Assessment. Chemistry & Biodiversity 22, e202403415, https://doi.org/10.1002/cbdv.202403415 (2025).

  89. Ogunbiyi, E. O., Kupa, E., Adanma, U. M. & Solomon, N. O. Comprehensive review of metal complexes and nanocomposites: Synthesis, characterization, and multifaceted biological applications. Engineering Science & Technology Journal 5, 1935–1951. https://doi.org/10.51594/estj.v5i6.1215 (2024).

    Google Scholar 

  90. Chota, A., Abrahamse, H. & George, B. P. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagn. Photodyn. Ther. 48, 104252 (2024).

    Google Scholar 

  91. Abdelkader, D. H. et al. Insight into fucoidan-based PEGylated PLGA nanoparticles encapsulating methyl anthranilic acid: In vitro evaluation and in vivo anti-inflammatory study. Mar. Drugs 20, 694 (2022).

    Google Scholar 

  92. Kim, N.-G. et al. Harnessing marine-derived polyphenols for the one-pot synthesis of functional silver nanoparticles: Anti-cancer, anti-bacterial, and MD simulation. Nano Today 61, 102651 (2025).

    Google Scholar 

  93. Abbigeri, M. B. et al. Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract. Nano TransMed 4, 100070 (2025).

  94. Hoang, V.-T. et al. Functionalized-AgNPs for Long-Term Stability and Its Applicability in the Detection of Manganese Ions. Adv. Polym. Technol. 2020, 9437108 (2020).

    Google Scholar 

  95. Swain, S., Bej, S., Bishoyi, A. K., Jali, B. R. & Padhy, R. N. Biosynthesis and characterisations of silver nanoparticles with filamentous cyanobacterium Lyngbya sp. with in vitro antibacterial properties against MDR pathogenic bacteria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1–11 (2024).

  96. Edayadulla, N. & Sundari, C. S. in Sustainable Green Synthesised Nano-Dimensional Materials for Energy and Environmental Applications 47–63 (CRC Press, 2024).

  97. Kabeya, J. K. et al. Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste. Artificial Cells, Nanomedicine, and Biotechnology 53, 29–42 (2025).

    Google Scholar 

  98. Fathima, A. & Rao, J. R. Selective toxicity of Catechin—a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 100, 6395–6402 (2016).

    Google Scholar 

  99. Gheisari, F. et al. Bromelain-loaded silver nanoparticles: Formulation, characterization and biological activity. Inorg. Chem. Commun. 161, 112006 (2024).

    Google Scholar 

  100. Tabaika, P. M., Astuty, S. D., Dewang, S., Permatasari, N. U. & Wahiduddin, W. The Comparison between Energy Density of Blue and Red Light which Activation Silver Nanoparticles to Inhibition Candida albicans Biofilms. Trends in Sciences 21, 7702–7702. https://doi.org/10.48048/tis.2024.7702 (2024).

    Google Scholar 

  101. Barabadi, H. & Honary, S. Biofabrication of gold and silver nanoparticles for pharmaceutical applications. Pharmaceutical and Biomedical Research 2, 1–7. https://doi.org/10.18869/acadpub.pbr.2.1.1 (2016).

    Google Scholar 

  102. Honary, S., Barabadi, H., Gharaei-Fathabad, E. & Naghibi, F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop. J. Pharm. Res. 12, 7–11. https://doi.org/10.4314/tjpr.v12i1.2 (2013).

    Google Scholar 

  103. Jain, R., Singh, R., Badhwar, R., Gupta, T. & Popli, H. Development and optimization of Clitoria Teratea synthesized silver nanoparticles and its application to nanogel systems for Wound Healing. Drug Dev. Ind. Pharm. 50, 181–191 (2024).

    Google Scholar 

  104. Idris, A. A. M., Asman, S., Mohamed, M. H., Ali, M. A. N. M. & Sulaimi, W. M. F. H. W. Identifying the phytochemical content in Illicium verum (Star Anise) extracts prepared with different polarity solvents based on a simple maceration method. Enhanced Knowledge in Sciences and Technology 4, 217–222 (2024).

  105. Nzor, J., Uwakwe, A. & Ogunka-Nnoka, C. Comparative analysis of Anthocleista vogelii leaf extracts: Solvent influence on phytochemical composition, quantitative profile, and in-vitro antioxidant activities. Int. J. Innov. Biochem. Microbiol. Res. 12, 1–7 (2024).

    Google Scholar 

  106. Clogston, J. D. & Patri, A. K. Zeta potential measurement. Characterization of nanoparticles intended for drug delivery, 63–70 (2011).

  107. Abbigeri, M. B. et al. Potential in vitro antibacterial and anticancer properties of biosynthesized multifunctional silver nanoparticles using Martynia annua L. leaf extract. Nano-Structures & Nano-Objects 39, 101320, https://doi.org/10.1016/j.nanoso.2024.101320 (2024).

  108. Filippov, S. et al. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Materials Horizons 10, https://doi.org/10.1039/D3MH00717K (2023).

  109. Karunakar, K. K., Cheriyan, B. V., Gnanisha, M. & Abinavi, B. Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnology Notes (2024).

  110. Gurunathan, S. et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?. Nanomaterials 10, 1645 (2020).

    Google Scholar 

  111. Chen, L. & Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng., C 112, 110924 (2020).

    Google Scholar 

  112. Bhatti, A. & DeLong, R. K. Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacology & Translational Science 6, 220–228 (2023).

    Google Scholar 

  113. Alshallash, K. S. et al. Zingiber officinale-Mediated biosynthesis of bimetallic Gold/Silver (BAu/Ag) nanoalloys; an insight into antiviral and anticancer activities. Journal of King Saud University-Science 36, 103243 (2024).

    Google Scholar 

  114. Shady, N. H. et al. Hepatitis c virus ns3 protease and helicase inhibitors from red sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. International Journal of Nanomedicine, 3377–3389 (2020).

  115. Abdel-Rahman, I. A. et al. Metabolite profiling of green algae Halimeda opuntia to target hepatitis C virus-796 polymerase inhibitors assisted by molecular docking. S. Afr. J. Bot. 151, 538–543 (2022).

    Google Scholar 

  116. Dhanasezhian, A. et al. Anti-herpes simplex virus (HSV-1 and HSV-2) activity of biogenic gold and silver nanoparticles using seaweed Sargassum wightii. (2019).

  117. Bhavi, S. M. et al. Biogenic silver nanoparticles from Simarouba glauca DC leaf extract: Synthesis, characterization, and anticancer efficacy in lung cancer cells with protective effects in Caenorhabditis elegans. Nano TransMed 3, 100052. https://doi.org/10.1016/j.ntm.2024.100052 (2024).

    Google Scholar 

  118. Singh, S. R. et al. The effect of Clitoria ternatea L. flowers-derived silver nanoparticles on A549 and L-132 human cell lines and their antibacterial efficacy in Caenorhabditis elegans in vivo. Hybrid Advances 8, 100359, https://doi.org/10.1016/j.hybadv.2024.100359 (2025).

  119. Bhavi, S. M. et al. Syzygium malaccense leaf extract-mediated silver nanoparticles: Synthesis, characterization, and biomedical evaluation in Caenorhabditis elegans and lung cancer cell line. Green Chem. Lett. Rev. 18, 2456624. https://doi.org/10.1080/17518253.2025.2456624 (2025).

    Google Scholar 

  120. Bhavi, S. M. et al. Green synthesis, characterization, antidiabetic, antioxidant and antibacterial applications of silver nanoparticles from Syzygium caryophyllatum (L.) Alston leaves. Process Biochemistry 145, 89–103, https://doi.org/10.1016/j.procbio.2024.06.017 (2024).

  121. Abbigeri, M. B. et al. Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract. Nano TransMed 4, 100070, https://doi.org/10.1016/j.ntm.2025.100070 (2025).

  122. Santhosh, S. et al. Growth optimization, free radical scavenging and antibacterial potential of Chlorella sp. SRD3 extracts against clinical isolates. Journal of applied microbiology 127, 481–494 (2019).

  123. Sigamani, S. et al. Larvicidal potency of the extracts from Chlorella sp. against Aedes aegypti. Biocatalysis and Agricultural Biotechnology 27, 101663 (2020).

  124. Min, J.-Y. & Jang, Y. J. Macrolide therapy in respiratory viral infections. Mediators of inflammation 2012 (2012).

  125. Poddighe, D. & Aljofan, M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antiviral Chem. Chemother. 28, 2040206620961712 (2020).

    Google Scholar 

  126. Lenz, K. D., Klosterman, K. E., Mukundan, H. & Kubicek-Sutherland, J. Z. Macrolides: From toxins to therapeutics. Toxins 13, 347 (2021).

    Google Scholar 

  127. Huang, M.-H. et al. Up-regulation of glycolipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication. Acta Pharmaceutica Sinica B 9, 769–781. https://doi.org/10.1016/j.apsb.2019.01.013 (2019).

    Google Scholar 

  128. El Baz, F., El Baroty, G., Abd El Baky, H., Abd El-Salam, O. & Ibrahim, E. Structural characterization and biological activity of sulfolipids from selected marine algae. Grasas y aceites 64, 561–571 (2013).

  129. Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbiol. 202, 213–223. https://doi.org/10.1007/s00203-019-01734-9 (2020).

    Google Scholar 

  130. Kaushik, S., Kaushik, S., Kumar, R., Dar, L. & Yadav, J. P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. VirusDisease 31, 470–478, https://doi.org/10.1007/s13337-020-00624-9 (2020).

  131. Rena, N. & Wibawa, I. Albumin infusion in liver cirrhotic patients. Acta Med Indones 42, 162–168 (2010).

    Google Scholar 

  132. Paslaru, L. et al. Comparative RNA-sequencing analysis reveals high complexity and heterogeneity of transcriptomic and immune profiles in hepatocellular carcinoma tumors of viral (HBV, HCV) and non-viral etiology. Medicina 58, 1803 (2022).

    Google Scholar 

  133. Sonntag, R. et al. Cyclin E1 in murine and human liver cancer: A promising target for therapeutic intervention during tumour progression. Cancers 13, 5680 (2021).

    Google Scholar 

  134. Stuart, J. D., Salinas, E. & Grakoui, A. Immune system control of hepatitis C virus infection. Curr. Opin. Virol. 46, 36–44 (2021).

    Google Scholar 

  135. Park, S.-J. & Hahn, Y. S. Hepatocytes infected with hepatitis C virus change immunological features in the liver microenvironment. Clin. Mol. Hepatol. 29, 65 (2023).

    Google Scholar 

  136. Perrin-Cocon, L. et al. Domain 2 of hepatitis c virus protein ns5a activates glucokinase and induces lipogenesis in hepatocytes. Int. J. Mol. Sci. 23, 919 (2022).

    Google Scholar 

  137. Yan, Y., Tang, Y. d. & Zheng, C. When cyclin‐dependent kinases meet viral infections, including SARS‐CoV‐2. Journal of Medical Virology 94, 2962–2968 (2022).

  138. Sookoian, S. et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 103, 422–434 (2016).

    Google Scholar 

  139. Villa, E. et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology 140, 818–829. e812 (2011).

  140. Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N. & Singh, D. K. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology 9, 1–9 (2011).

  141. Manisekaran, R. et al. Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update. ChemistrySelect 9, e202403772 (2024).

    Google Scholar 

  142. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61. https://doi.org/10.1099/00221287-111-1-1 (1979).

    Google Scholar 

  143. Leyu, A. M., Debebe, S. E., Bachheti, A., Rawat, Y. S. & Bachheti, R. K. Green Synthesis of Gold and Silver Nanoparticles Using Invasive Alien Plant Parthenium hysterophorus and Their Antimicrobial and Antioxidant Activities. Sustainability 15, 9456 (2023).

    Google Scholar 

  144. Chinnasamy, R. et al. Eco-friendly synthesis of Ag-NPs using Endostemon viscosus (Lamiaceae): Antibacterial, antioxidant, larvicidal, photocatalytic dye degradation activity and toxicity in zebrafish embryos. Environ. Res. 218, 114946 (2023).

    Google Scholar 

  145. Amin, B. H., Ahmed, H. Y., El Gazzar, E. M. & Badawy, M. M. Enhancement the mycosynthesis of selenium nanoparticles by using gamma radiation. Dose-Response 19, 15593258211059324. https://doi.org/10.1177/15593258211059323 (2021).

    Google Scholar 

  146. Lim, Y. S. & Hwang, S. B. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J. Biol. Chem. 286, 11290–11298. https://doi.org/10.1074/jbc.M110.194472 (2011).

    Google Scholar 

  147. Lim, Y.-S. et al. Asunaprevir, a potent Hepatitis C virus protease inhibitor, blocks SARS-CoV-2 propagation. Mol. Cells 44, 688–695 (2021).

    Google Scholar 

  148. Abdel-Wahab, N. M. et al. Diterpenoids profile of the marine sponge Chelonaplysilla erecta and candidacy as potential antitumor drugs investigated by molecular docking and pharmacokinetic studies. Nat. Prod. Res. 37, 598–602. https://doi.org/10.1080/14786419.2022.2063856 (2023).

    Google Scholar 

  149. Azmy, L. et al. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. Biology 13, 581 (2024).

  150. Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D. & Poroikov, V. PASS-based prediction of metabolites detection in biological systems. SAR QSAR Environ. Res. 30, 751–758 (2019).

    Google Scholar 

  151. Iqbal, D. et al. Pharmacophore-based screening, molecular docking, and dynamic simulation of fungal metabolites as inhibitors of multi-targets in neurodegenerative disorders. Biomolecules 13, 1613 (2023).

    Google Scholar 

  152. Singh, S. K., Kumar, A., Singh, R. B., Ghosh, P. & Bajad, N. G. Recent applications of bioinformatics in target identification and drug discovery for Alzheimer’s disease. Curr. Top. Med. Chem. 22, 2153–2175 (2022).

    Google Scholar 

  153. Von Mering, C. et al. STRING: Known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005).

    Google Scholar 

  154. Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Google Scholar 

  155. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    Google Scholar 

  156. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Google Scholar 

  157. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51, D587-d592. https://doi.org/10.1093/nar/gkac963 (2023).

    Google Scholar 

  158. Studio, D. Discovery studio. Accelrys [2.1] (2008).

  159. Tegegne, B. A. & Alehegn, A. A. Antipyretic potential of 80% methanol extract and solvent fractions of Bersama abyssinica Fresen.(melianthaceae) leaves against yeast-induced pyrexia in mice. Journal of Experimental Pharmacology, 81–91 (2023)

Download references