Airborne transmission-mediated delivery of a live-attenuated influenza virus vector-based intranasal COVID-19 vaccine protects Syrian hamsters against SARS-CoV-2 challenge

airborne-transmission-mediated-delivery-of-a-live-attenuated-influenza-virus-vector-based-intranasal-covid-19-vaccine-protects-syrian-hamsters-against-sars-cov-2-challenge
Airborne transmission-mediated delivery of a live-attenuated influenza virus vector-based intranasal COVID-19 vaccine protects Syrian hamsters against SARS-CoV-2 challenge

Data availability

The data supporting the findings of this study are available within the article and the main figures or its supplementary materials. Raw data used to generate plots are available from the corresponding authors upon reasonable request.

References

  1. Yang, S. et al. Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure. Lancet Infect. Dis. 24, e70–e72 (2024).

    Google Scholar 

  2. Jeworowski, L. M. et al. Humoral immune escape by current SARS-CoV-2 variants BA.2.86 and JN.1, December 2023. Eurosurveillance 29, 2300740 (2024).

    Google Scholar 

  3. Kurhade, C. et al. Low neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1 and XBB.1 by parental mRNA vaccine or a BA.5 bivalent booster. Nat. Med. 29, 344–347 (2023).

    Google Scholar 

  4. Szabo, P. A., Miron, M. & Farber, D. L. Location, location, location: Tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019).

    Google Scholar 

  5. Russell, M. W. & Mestecky, J. Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front. Immunol. 13, 957107 (2022).

    Google Scholar 

  6. Lavelle, E. C. & Ward, R. W. Mucosal vaccines—fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2022).

    Google Scholar 

  7. Wang, S. et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 8, 149 (2023).

    Google Scholar 

  8. Madhavan, M. et al. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: an open-label partially-randomised ascending dose phase I trial. eBioMedicine 85, 104298 (2022).

    Google Scholar 

  9. Li, J.-X. et al. Safety and immunogenicity of heterologous boost immunisation with an orally administered aerosolised Ad5-nCoV after two-dose priming with an inactivated SARS-CoV-2 vaccine in Chinese adults: a randomised, open-label, single-centre trial. Lancet Respir. Med. 10, 739–748 (2022).

    Google Scholar 

  10. Wu, S. et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 11, 4081 (2020).

    Google Scholar 

  11. Arnberg, N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev. Med. Virol. 19, 165–178 (2009).

    Google Scholar 

  12. de Graaf, M. & Fouchier, R. A. M. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 33, 823–841 (2014).

    Google Scholar 

  13. Ge, S. & Wang, Z. An overview of influenza A virus receptors. Crit. Rev. Microbiol. 37, 157–165 (2011).

    Google Scholar 

  14. Chen, J. et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2. Sci. Bull. 67, 1372–1387 (2022).

    Google Scholar 

  15. Zhang, L. et al. Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters. Nat. Commun. 14, 4117 (2023).

    Google Scholar 

  16. Zhu, F. et al. Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults: randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Respir. Med. 18, 749–760 (2022).

  17. Zhu, F. et al. Safety and efficacy of the intranasal spray SARS-CoV-2 vaccine dNS1-RBD: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 11, 1075–1088 (2023).

    Google Scholar 

  18. Wang, C. C. et al. Airborne transmission of respiratory viruses. Science 373, eabd9149.

  19. Bull, J. J., Smithson, M. W. & Nuismer, S. L. Transmissible Viral Vaccines. Trends Microbiol. 26, 6–15 (2018).

    Google Scholar 

  20. Marin, M., Leung, J. & Gershon, A. A. Transmission of vaccine-strain varicella-zoster virus: a systematic review. Pediatrics 144, e20191305 (2019).

    Google Scholar 

  21. Lopez Moreno, G., Nirmala, J., Goodell, C., Culhane, M. & Torremorell, M. Shedding and transmission of a live attenuated influenza A virus vaccine in pre-weaned pigs under field conditions. PLoS ONE 16, e0246690 (2021).

    Google Scholar 

  22. Treanor, J. History of live, attenuated influenza vaccine. J. Pediatr. Infect. Dis. Soc. 9, S3–S9 (2020).

    Google Scholar 

  23. Ledford, H. Spate of polio outbreaks worldwide puts scientists on alert. Nature 609, 20–21 (2022).

    Google Scholar 

  24. Thangavel, R. R. & Bouvier, N. M. Animal models for influenza virus pathogenesis, transmission, and immunology. J. Immunol. Methods 410, 60–79 (2014).

    Google Scholar 

  25. Nguyen, T.-Q., Rollon, R. & Choi, Y.-K. Animal models for influenza research: strengths and weaknesses. Viruses 13, 1011 (2021).

  26. Bouvier, N. M. & Lowen, A. C. Animal models for influenza virus pathogenesis and transmission. Viruses 2, 1530–1563 (2010).

    Google Scholar 

  27. Stauft, C. B. et al. Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants. Nat. Commun. 14, 3393 (2023).

    Google Scholar 

  28. Knisely, J. M. et al. Mucosal vaccines for SARS-CoV-2: scientific gaps and opportunities—workshop report. npj Vaccines 8, 53 (2023).

    Google Scholar 

  29. Mohn, K. G. I., Smith, I., Sjursen, H. & Cox, R. J. Immune responses after live attenuated influenza vaccination. Hum. Vaccines Immunother. 14, 571–578 (2018).

    Google Scholar 

  30. Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 117, 16587 (2020).

    Google Scholar 

Download references

Acknowledgements

Diagrams were created with BioRender.com. This work was supported by the National Program on Key Research Project of China (2023YFC2307800 and 2023YFC3042900), the National Natural Science Foundation of China (82041038, 32000649), Natural Science Foundation of Fujian Province (2021J02006), Science and Technology Project of Xiamen City (2022CXY0108), the Fundamental Research Funds for the Central Universities (20720220006), the Open Research Fund of State Key Laboratory of Vaccines for Infectious Diseases (2024SKLVDkf02), and Research Fund of Xiang An Biomedicine Laboratory (2024XAKJ0101002).

Author information

Author notes

  1. These authors contributed equally: Yaode Chen, Limin Zhang, Congjie Chen, Lunzhi Yuan.

Authors and Affiliations

  1. State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, China

    Yaode Chen, Limin Zhang, Congjie Chen, Lunzhi Yuan, Qiangyuan Han, Xijing Wang, Heming Chen, Xiangjie Chen, Ruotong Wu, Zeheng Li, Lingyu Han, Zhen Lu, Dongmei Wei, Ningshao Xia, Junyu Chen & Yixin Chen

  2. National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China

    Limin Zhang, Lunzhi Yuan, Ningshao Xia, Junyu Chen & Yixin Chen

Authors

  1. Yaode Chen
  2. Limin Zhang
  3. Congjie Chen
  4. Lunzhi Yuan
  5. Qiangyuan Han
  6. Xijing Wang
  7. Heming Chen
  8. Xiangjie Chen
  9. Ruotong Wu
  10. Zeheng Li
  11. Lingyu Han
  12. Zhen Lu
  13. Dongmei Wei
  14. Ningshao Xia
  15. Junyu Chen
  16. Yixin Chen

Contributions

J.C., N.X., and Y.C. conceived the project and designed the experiments; Y.C., L.Z., C.C., L.H., Z.L., and D.W. prepared the dNS1-RBD vaccines, performed viral characterization experiments; Y.C., L.Z., C.C., L.Y., X.W., R.W., Z.L., and Q.H. participated in the mice, ferrets and hamsters challenges; L.Y., H.C., and X.C. tested the RNA quantification and histopathology; Y.C., L.Z., and J.C analyzed data; Y.C., L.Z., J.C., and Y.C. wrote the manuscript; Y.C., L.Z., N.X., J.C., and Y.C. participated in the discussion and interpretation of the results. All authors reviewed and approved the paper. AI-assisted technologies were used in the writing process for revision and modification.

Corresponding authors

Correspondence to Junyu Chen or Yixin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, L., Chen, C. et al. Airborne transmission-mediated delivery of a live-attenuated influenza virus vector-based intranasal COVID-19 vaccine protects Syrian hamsters against SARS-CoV-2 challenge. npj Vaccines (2025). https://doi.org/10.1038/s41541-025-01332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41541-025-01332-5