References
-
Oluwafemi, F. A. et al. Space food and nutrition in a long term manned mission. Proceedings of the International Astronautical Congress, IAC 2018-October, 1–21 (2018).
-
Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–43 (2005).
-
Vernikos, J., Walter, N., Worms, J. C. & Blanc, S. Theseus: The European research priorities for human exploration of space. NPJ Microgravity 2, 16034 (2016).
-
Tang, H., Rising, H. H., Majji, M. & Brown, R. D. Long-Term Space Nutrition: A Scoping Review. Nutrients 14, 194 (2021).
-
Sagan, C. Pale Blue Dot: A Vision of the Human Future in Space. (Random House, 1994).
-
Salotti, J. M. Minimum Number of Settlers for Survival on Another Planet. Sci. Rep. 10, (2020).
-
Marin, F. & Beluffi, C. Computing the minimal crew: For a multi-generational space journey towards Proxima Centauri b. JBIS – J. Br. Interplanetary Soc. 71, 45–52 (2018).
-
Berliner, A. J. et al. Towards a Biomanufactory on Mars. Front. Astronomy Space Sci. 8, 711550 (2021).
-
MELiSSA Foundation. The MELiSSA Project. https://www.melissafoundation.org/page/melissa-project.
-
CUBES. Center for the Utilization of Biological Engineering in Space (CUBES). https://cubes.space/.
-
Alemany, L. et al. Continuous controlled long-term operation and modeling of a closed loop connecting an air-lift photobioreactor and an animal compartment for the development of a life support system. Biochem Eng. J. 151, 107323 (2019).
-
Vermeulen, A. C. J., Hubers, C., de Vries, L. & Brazier, F. What horticulture and space exploration can learn from each other: The Mission to Mars initiative in the Netherlands. Acta Astronaut 177, 421–424 (2020).
-
Serge Pieters (IPL). TN 98.3.21 – Review of Modelling Issues Related to Higher Plant Metabolism, Identification of Critical Points and Proposed Method (2011). https://www.melissafoundation.org/download/809 (2011).
-
Ewert, M. K., Chen, T. T. & Powell, C. D. Life Support Baseline Values and Assumptions Document. http://www.sti.nasa.gov (2022).
-
Chunxiao, X. & Hong, L. Crop candidates for the bioregenerative life support systems in China. Acta Astronaut 63, 1076–1080 (2008).
-
Masuda, T. et al. DEVELOPMENT OF A 1-WEEK CYCLE MENU FOR AN ADVANCED LIFE SUPPORT SYSTEM (ALSS) UTILIZING PRACTICAL BIOMASS PRODUCTION DATA FROM THE CLOSED ECOLOGY EXPERIMENT FACILITIES (CEEF). Habitation 10, www.cognizantcommunication.com (2005).
-
Dueck, T., Kempkes, F., Meinen, E. & Stanghellini, C. Choosing Crops for Cultivation in Space. (2016).
-
Agureev, A. N. et al. Nutritional status in the experiment with 105-day isolation as the first phase of the Mars-500 project. Hum. Physiol. 43, 793–801 (2017).
-
Hao, Z., Li, L., Fu, Y. & Liu, H. The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: A 105-day ground-based space simulation in Lunar Palace 1. Environ. Microbiol 20, 3643–3656 (2018).
-
Ellena, G. et al. Microbial supplements for extraterrestrial environments. ScienceOpen Posters https://doi.org/10.14293/P2199-8442.1.SOP-.PFDUFP.v1 (2024).
-
Herforth, A. et al. A global review of food-based dietary guidelines. Adv. Nutr. 10, 590–605 (2019).
-
Sakkas, H. et al. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina 56, 88 (2020).
-
Marco, M.L. et al. Health benefits of fermented foods: microbiota and beyond. Current Opinon in Biotechnology. 44, 94–102 (2017).
-
Ouwehand, A. C. & Vesterlund, S. Health aspects of probiotics. IDrugs 6, 573–580 (2003).
-
Breuer, U. & Harms, H. Debaryomyces hansenii – An extremophilic yeast with biotechnological potential. Yeast 23, 415–437 (2006).
-
Spacova, I. et al. Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Micro Biotechnol. 16, 99–115 (2023).
-
Spacova, I. et al. Spontaneous Riboflavin-Overproducing Limosilactobacillus reuteri for Biofortification of Fermented Foods. Front Nutr. 9, 916607 (2022).
-
Suva, M., Sureja, V. & Kheni, D. Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. J. Curr. Res. Sci. Med. 2, 65 (2016).
-
Matassa, S., Boon, N., Pikaar, I. & Verstraete, W. Microbial protein: future sustainable food supply route with low environmental footprint. Microb. Biotechnol. 9, 568–75 (2016).
-
Ye, J. W. et al. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol. 41, 342–357 (2023).
-
Tamang, J. P., Shin, D. H., Jung, S. J. & Chae, S. W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 7, 578 (2016).
-
Merino, N. et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).
-
Kanekar, P. P. & Kanekar, S. P. Diversity and Biotechnology of Extremophilic Microorganisms from India. 41, (Springer Nature Singapore, 2022).
-
Mota, A., Koch, S., Matthiae, D., Santos, N. & Cortesão, M. How Habitable Are M Dwarf Exoplanets? Modeling Surface Conditions and Exploring the Role of Melanins in the Survival of Aspergillus niger Spores Under Exoplanet-Like Radiation. Astrobiology 25, 161–176 (2025).
-
Vreeland, R. H. Advances in Understanding the Biology of Halophilic Microorganisms. Advances in Understanding the Biology of Halophilic Microorganisms (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-5539-0.
-
Guan, N. & Liu, L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 104, 51–65 (2020).
-
Gabriele Ellena, R. S. & et al., A. M. The potential role of extremophiles as food supplements in extraterrestrial bioscience engineering. ScienceOpen Posters (2024) https://doi.org/10.14293/P2199-8442.1.SOP-.PFWJN5.v1.
-
Ellena, G. et al. Development and implementation of a simulated microgravity setup for edible cyanobacteria. NPJ Microgravity 10, 99 (2024).
-
Fu, Y., Guo, R. & Liu, H. An optimized 4-day diet meal plan for ‘Lunar Palace 1’. J. Sci. Food Agric 99, 696–702 (2019).
-
Weihreter, M., Brunet, J., Vanderstraeten, S.-D., Van, D. & Straeten, D. TN 98.1.1 – Elaboration of System Requirements for a FFPS Issue 2 Revision 0 0 MELiSSA. https://www.melissafoundation.org/download/267 (2010).
-
Kirchhoff, E. Online-Publication of the German Food Composition Table “Souci–Fachmann–Kraut“ on the Internet. J. FOOD Composition ANAL. – J. FOOD COMPOS ANAL 15, 465–472 (2002).
-
Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 22. http://www.ars.usda.gov/nutrientdata (2009).
-
FoodData Central. https://fdc.nal.usda.gov/error.html.
-
NASA Johnson Space Center. Nutritional Requirements for Exploration Missions up to 365 Days. https://www.nasa.gov/sites/default/files/atoms/files/jsc67378_expl_nutrs_042020_1.pdf (2020).
-
Joint FAO/WHO Expert Consultation on Human Vitamin & Requirements, M. Vitamin and Mineral Requirements in Human Nutrition. (World Health Organization and Food and Agriculture Organization of the United Nations, Geneva, Switzerland, 2004).
-
Ajib, F. A. & Childress, J. M. Magnesium Toxicity. in StatPearls [Internet] (StatPearls Publishing, Treasure Island (FL), 2022).
-
Rout, P. & Jialal, I. Hyperphosphatemia. in StatPearls [Internet] (StatPearls Publishing, Treasure Island (FL), 2023).
-
Sauer, J., Mason, J. B. & Choi, S. W. Too much folate: A risk factor for cancer and cardiovascular disease?. Curr. Opin. Clin. Nutr. Metab. Care 12, 30–36 (2009).
-
U.S. Department of Agriculture (USDA), A. R. S. FoodData Central: Foundation Foods. Version Current (2024).
-
Šola, I., Poljuha, D., Pavicic, I., Jurinjak Tušek, A. & Šamec, D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods 14, 416 (2025).
-
Hornick, S. B. Factors affecting the nutritional quality of crops. Am. J. Alternative Agric. 7, 63–68 (1992).
-
Bakaloudi, D. R. et al. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 40, 3503–3521 (2021).
-
Angeloni, D. et al. ROADMAP #9: Biology in Space and Analogue Environments Contributors in Alphabetical Order: Topics (Cells, Tissues, Molecular Networks): Topic C (Plant Biology).
-
Blaber, A. et al. ESA SciSpacE White Paper Series – Human Physiology. (2021).
-
Aliper, A. M. et al. Radioprotectors.org: an open database of known and predicted radioprotectors. Aging 12, 15741–15755 (2020).
-
Lledó, I. et al. Vitamins and Radioprotective Effect: A Review. Antioxidants 12, 611 (2023).
-
Fenech, M. F., Bull, C. F. & Van Klinken, B. J. W. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Advances in Nutrition (2023) https://doi.org/10.1016/j.advnut.2023.08.004.
-
Rampelotto, P. H. Extremophiles and extreme environments. Life 3, 482–485 (2013).
-
Sun, Y. et al. The Space Environment Activates Capsular Polysaccharide Production in Lacticaseibacillus rhamnosus Probio-M9 by Mutating the wze (ywqD) Gene. Microbiol. Spectr. 11, e04677–22 (2023).
-
s10438-005-0065-x.
-
Su, X. et al. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can. J. Microbiol 69, 464–478 (2023).
-
Newcombe, D. A. et al. Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl Environ. Microbiol 71, 8147–8156 (2005).
-
McCarthy, J.-A. & Damoglou, A. P. The effect of substrate on the radiation resistance of yeasts isolated from sausage meat. Lett. Appl Microbiol 22, 80–84 (1996).
-
Almada-Érix, C. N. et al. Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Res. Int. 142, 110191 (2021).
-
Guesmi, S. et al. Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J. Biol. Sci. 29, 1260–1268 (2022).
-
Senatore, G., Mastroleo, F., Leys, N. & Mauriello, G. Growth of lactobacillus reuteri DSM17938 under two simulated microgravity systems: Changes in reuterin production, gastrointestinal passage resistance, and stress genes expression response. Astrobiology 20, 1–14 (2020).
-
Cortesão, M. et al. Bacillus subtilis spore resistance to simulated mars surface conditions. Front. Microbiol. 10, 333 (2019).
-
Smith, S. M., Zwart, S. R., Douglas, G. L. & Heer, M. Human Adaptation to Spaceflight: The Role of Food and Nutrition Second Edition.
-
Gröber, U., Kisters, K. & Schmidt, J. Neuroenhancement with Vitamin B12-underestimated neurological significance. Nutrients 5, 5031–5045 (2013).
-
Lang, T. et al. Towards human exploration of space: The THESEUS review series on muscle and bone research priorities. NPJ Micrograv. 3, 8 (2017).
-
Kovalev, V. S., Manukovsky, N. S. & Tikhomirov, A. A. Computing-feasibility study of NASA nutrition requirements as applied to a bioregenerative life support system. Acta Astronaut 159, 371–376 (2019).
-
Fahrion, J., Ellena, G., Mastroleo, F., Dussap, C. G. & Leys, N. The influence of different storage conditions on Limnospira indica, a promising candidate for air revitalisation in space. iScience 113499 https://doi.org/10.1016/j.isci.2025.113499 (2025).
-
Fahrion, J. et al. ARTHROSPIRA-C space flight experiment: Validation of biomass and oxygen production bioprocesses in a space bioreactor prior to upload to space. Acta Astronaut 229, 374–390 (2025).
-
Tsotetsi, T., Nephali, L., Malebe, M. & Tugizimana, F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants 11, 2482 (2022).
-
Navarrete, C., Estrada, M. & Martínez, J. L. Debaryomyces hansenii: an old acquaintance for a fresh start in the era of the green biotechnology. World J. Microbiol. Biotechnol. 38, 99 (2022).
-
Balkan Green Energy News. LIQUID3 urban photo-bioreactor installed in Belgrade to combat air pollution. https://balkangreenenergynews.com/liquid-tree-to-combat-air-pollution-in-belgrade/ (2021).
-
United Nations Development Programme. The first algae air purifier in Serbia. https://www.undp.org/serbia/news/first-algae-air-purifier-serbia (2021).
-
Santos, F. et al. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl Environ. Microbiol 75, 3930–3936 (2009).
-
Santos, F., Wegkamp, A., De Vos, W. M., Smid, E. J. & Hugenholtz, J. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ. Microbiol 74, 3291–3294 (2008).
-
Thakur, K., Tomar, S. K. & De, S. Lactic acid bacteria as a cell factory for riboflavin production. Micro Biotechnol. 9, 441–451 (2016).
-
Merdinger, E. & Devine, E. M. Lipids of Debaryomyces Hansenii. J. BACTERIOL. 89 https://journals.asm.org/journal/jb (1965).
-
Kessi-Pérez, E. I., González, A., Palacios, J. L. & Martínez, C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 39, 482–492 (2022).
-
Shurson, G. C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 235, 60–76 (2018).
-
Oraei, M., Hadi Razavi, S. & Khodaiyan, F. Optimization of Effective Minerals on Riboflavin Production by Bacillus Subtilis Subsp. Subtilis ATCC 6051 Using Statistical Designs. vol. 10.
-
Kuenz, A., Tölle, M. & Bromann, S. Investigations on riboflavin production by wild-type yeast strain for supplementation of organic feed. Org. Agric. 13, 399–410 (2023).
-
Banerjee Aparna. Bioactive polysaccharides from polyextremophilic bacteria of Deception Island as prospective food additives (INACH Regular RT_24-21). https://www.inach.cl/ciencia-antartica/fondos-concursables-inach/resultados-concursos-inach/ (2021).
-
USDA Plants Database. https://plants.usda.gov/home.
-
Darmon, N., Ferguson, E. L. & Briend, A. Impact of a Cost Constraint on Nutritionally Adequate Food Choices for French Women: An Analysis by Linear Programming. J. Nutr. Educ. Behav. 38, 82–90 (2006).
-
Darmon, N., Ferguson, E. L. & Briend, A. A cost constraint alone has adverse effects on food selection and nutrient density: An analysis of human diets by linear programming. J. Nutr. 132, 3764–71 (2002).
-
Alaini, R., Rajikan, R. & Elias, S. M. Diet optimization using linear programming to develop low cost cancer prevention food plan for selected adults in Kuala Lumpur, Malaysia. BMC Public Health 19, 546 (2019).
-
Ferguson, E. L., Darmon, N., Briend, A. & Premachandra, I. M. Food-based dietary guidelines can be developed and tested using linear programming analysis. J. Nutr. 134, 951–7 (2004).
-
Panel, E. B. Updated list of QPS-recommended microorganisms for safety risk assessments carried out by EFSA. (2025) https://doi.org/10.5281/zenodo.10534041.
-
R, D. S. F. D. A. & C, P. Algae as food and food supplements in Europe. https://doi.org/10.2760/049515 (2021).
-
Pinchart, P.-E. et al. The genus Limnospira contains only two species both unable to produce microcystins: L. maxima and L. platensis comb. nov. iScience 27, 110845 (2024).
-
Gessler, N. N. et al. The physiological adaptation features of the poly-extremophilic yeast yarrowia lipolytica W29 during long-term cultivation. Appl Biochem Microbiol 58, 771–779 (2022).
-
Wang, D. et al. Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii. Process Biochem. 82, 59–67 (2019).
-
Schagerl, M. et al. Testing the purity of limnospira fusiformis cultures after axenicity treatments. Cells 14, 136 (2025).
-
Sharma, P., Meena, N., Aggarwal, M. & Mondal, A. K. Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress. Curr. Genet 48, 162–170 (2005).
-
Masojídek, J. & Torzillo, G. Mass Cultivation of Freshwater Microalgae. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-409548-9.09373-8.
-
Julia, C., Etilé, F. & Hercberg, S. Front-of-pack Nutri-Score labelling in France: an evidence-based policy. The Lancet Public Health 3, e164 (2018).
-
Dickie, S., Woods, J. L. & Lawrence, M. Analysing the use of the Australian Health Star Rating system by level of food processing. Int. J. Behav. Nutr. Phys. Activity 15, 128 (2018).
-
Alekhova, T. A. et al. Monitoring of microbial degraders in manned space stations. Appl Biochem Microbiol 41, 382–389 (2005).
-
Mccarthy’, J.-A. & Darnoglou, A. P. The Effect of Substrate on the Radiation Resistance of Yeasts Isolated from Sausage Meat. Letters in Applied Microbiology vol. 22 (1996).
-
Heinz, J., Rambags, V. & Schulze-Makuch, D. Physicochemical parameters limiting growth of debaryomyces hansenii in solutions of hygroscopic compounds and their effects on the habitability of martian brines. Life 11, 1194 (2021).
-
Sansone, C. et al. Isolation of a psychrotolerant Debaryomyces hansenii strain from fermented tea plant (Camellia sinensis) leaves. J. Plant Interact. 2, 169–174 (2007).
-
Hernández-Saavedra, N. Y. & Ochoa, J. L. Copper-zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast 15, 657–668 (1999).
-
García-González, A., Lotz, M. & Ochoa, J. L. García-González A et al. Anti-Inflammatory Activity of Anti-Inflammatory Activity of Superoxide Dismutase Obtained from Debaryomyces Hansenii on Type II Collagen Induced Arthritis in Rats ARTÍCULO ORIGINAL. Revista de Investigación Clínica vol. 61 (2009).
-
Deasy, P. B., Kuster,’ And, E. & Timoney, R. F. Resistance of Bacillus Subtilis Spores to Inactivation by Gamma Irradiation and Heating in the Presence of a Bactericide II. Factors Affecting Rates of Inactivation by Phenolic Bactericides. APPuED MICROBIOLOGY (1970).
-
Verseux, C. Resistance of cyanobacteria to space and Mars environments, in the frame of the EXPOSE-R2 space mission and beyond. (2018) https://doi.org/10.13140/RG.2.2.28437.88808.
-
Leibniz Institute DSMZ-German Collection of Microorganisms & GmbH, C. C. BacDive entry for DSMZ strain 1172. https://doi.org/10.13145/bacdive1172.20250331.9.3 (2024).
-
Lee, A. H., Rodriguez Jimenez, D. M. & Meisel, M. Limosilactobacillus reuteri – a probiotic gut commensal with contextual impact on immunity. Gut Microbes. 17, 2451088 (2025).
-
Smythe, P. & Efthimiou, G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 10, 1341 (2022).
-
Poughon, L. et al. Limnospira indica PCC8005 growth in photobioreactor: model and simulation of the ISS and ground experiments. Life Sci. Space Res (Amst.) 25, 53–65 (2020).
-
Fahrion, J., Gupta, S., Mastroleo, F., Dussap, C. G. & Leys, N. Chronic low-dose rate irradiation induces transient hormesis effect on cyanobacterium Limnospira indica. iScience 28, 111891 (2025).
-
Segers, C. et al. Limnospira indica PCC 8005 or Lacticaseibacillus rhamnosus GG Dietary Supplementation Modulate the Gut Microbiome in Mice. Appl. Microbiol. 2, 636–650 (2022).
-
Youssef, B. M., Asker, A. A., El-Samahy, S. K. & Swailam, H. M. Combined Effect of Steaming and Gamma Irradiation on the Quality of Mango Pulp Stored at Refrigerated Temperature. www.elsevier.com/locate/foodres.
-
Tang, X. M., Kayingo, G. & Prior, B. A. Functional analysis of the Zygosaccharomyces rouxii Fps1p homologue. Yeast 22, 571–581 (2005).
-
Gazso, L. G. & Ponta, C. C. Radiation Inactivation of Bioterrorism Agents. in Radiation Inactivation of Bioterrorism Agents 153–160 (IOS Press, 2004).
-
Regina Barroso Ruiz Sella, S. et al. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Lab-Scale Production of Bacillus atrophaeus’ Spores by Solid State Fermentation in Different Types of Bioreactors. Arch. Biol. Technol. v. 52, 159–170 (2009).
-
Folmsbee, M. J., McInerney, M. J. & Nagle, D. P. Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Appl Environ. Microbiol 70, 5252–5257 (2004).
-
Vaishampayan, P. A., Rabbow, E., Horneck, G. & Venkateswaran, K. J. Survival of Bacillus pumilus Spores for a Prolonged Period of Time in Real Space Conditions. Astrobiology 12, 487–497 (2012).
-
Parisi, A. & Antoine, A. D. Increased Radiation Resistance of Vegetative Bacillus Pumilus’. APPLE MICROBIOLOGY https://journals.asm.org/journal/am (1974).
-
BacDive Curators. Bacillus pumilus CCUG 21924 – BacDive ID 143929. Preprint at https://doi.org/10.13145/bacdive143929.20230509.8.1 (2023).
-
Wang, D. et al. Probiotic properties of a spaceflight-induced mutant lactobacillus plantarum SS18-50 in mice. Endocr. Metab. Immune Disord. Drug Targets 22, 525–531 (2022).
-
Watanabe, M., van der Veen, S. & Abee, T. Impact of respiration on resistance of lactobacillus plantarum WCFS1 to acid stress. Appl Environ. Microbiol 78, 4062–4064 (2012).
-
Suo, K. et al. Transcriptomics and proteomics analyses reveal the role of LlrG in ionizing radiation stress resistance of Lactococcus lactis subsp. lactis IL1403. Food Biosci. 68, 106579 (2025).
-
Brooijmans, R. J. W., Poolman, B., Schuurman-Wolters, G. K., De Vos, W. M. & Hugenholtz, J. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J. Bacteriol. 189, 5203–5209 (2007).
-
Salanski, P., Kowalczyk, M., Bardowski, J. K. & Szczepankowska, A. K. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front. Microbiol. 13, 822912 (2022).
-
Coil, D. A. et al. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). PeerJ 4, e1842 (2016).
-
Priest, F. G., Goodfellow, M., Shute, L. A. & Berkeley, R. C. W. Bacillus amyloliquefaciens sp. nov., nom. rev. Int J. Syst. Bacteriol. 37, 69–71 (1987).
-
Kang, J. E. et al. Dietary supplementation with a Bacillus superoxide dismutase protects against γ-radiation-induced oxidative stress and ameliorates dextran sulphate sodium-induced ulcerative colitis in mice. J. Crohns Colitis 12, 860–869 (2018).
-
Rey, M. W. et al. Open Access Complete Genome Sequence of the Industrial Bacterium Bacillus Licheniformis and Comparisons with Closely Related Bacillus Species. 5, http://genomebiology.com/2004/5/10/R77 (2004).
-
Feng, S., Meng, C., Hao, Z. & Liu, H. Bacillus licheniformis Reshapes the Gut Microbiota to Alleviate the Subhealth. Nutrients 14, 1642 (2022).
-
Fialkina, S. V., Deshevaya, E. A., Rakitin, A. L. & Orlov, O. I. Genome Stability of Bacillus velezensis after Two-Year Exposure in Open Space. Mol. Biol. 58, 33–42 (2024).
-
Sousa, E. G. et al. The research on the identification, taxonomy, and comparative genomics analysis of nine Bacillus velezensis strains significantly contributes to microbiology, genetics, bioinformatics, and biotechnology. Front. Microbiol. 16, (2025).
-
Liang, X. Structural characterization and bioactivity of exopolysaccharide synthesized by geobacillus sp. TS3-9 isolated from radioactive radon hot spring. Adv. Biotechnol. Microbiol. 4, 555634 (2017).
-
Daas, M. J. A., Vriesendorp, B., van de Weijer, A. H. P., van der Oost, J. & van Kranenburg, R. Complete genome sequence of geobacillus thermodenitrificans T12, a potential host for biotechnological applications. Curr. Microbiol 75, 49–56 (2018).
-
Tran, M. T. et al. Draft Genome Sequences of Spacecraft-Associated Microbes Isolated from Six NASA Missions. Microbiol. Resour. Announc. 12, e01011–22 (2023).
-
Leibniz Institute DSMZ – German Collection of Microorganisms & GmbH, C. C. BacDive strain entry for _Niallia circulans_ CIP 53.60. (2024).
-
Levinson, H. S. & Hyatt2, M. T. SOME EFFECTS OF HEAT AND IONIZING RADIATION ON SPORES OF BACILLUS MEGATERIUM1. https://journals.asm.org/journal/jb.
-
Lehri, B., Seddon, A. M. & Karlyshev, A. V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 8, 1753–1760 (2017).
-
Zhao, Y. et al. Lactobacillus fermentum and its potential immunomodulatory properties. J. Funct. Foods 56, 21–32 (2019).
-
BacDive Curators. Bacillus vallismortis DV1-F-3 – BacDive ID 1150. https://doi.org/10.13145/bacdive1150.20250331.9.3 (2025).
-
BacDive Curators. Pediococcus acidilactici CIP 102243 – BacDive ID 137940. https://doi.org/10.13145/bacdive137940.20241212.9.2 (2024).
-
Feng, P. et al. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes. 8, 63 (2022).
-
Holland, R., Crow, V. & Curry, B. Lactic Acid Bacteria: Pediococcus spp. in Encyclopedia of Dairy Sciences (Third Edition) (eds. McSweeney, P. L. H. & McNamara, J. P.) 233–237 (Academic Press, Oxford, 2022). https://doi.org/10.1016/B978-0-08-100596-5.23018-7.
-
Ayyash, M. et al. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 229, 115462 (2020).
-
BacDive Curators. Levilactobacillus brevis D 13 – BacDive ID 6654. https://doi.org/10.13145/bacdive6654.20241212.9.2 (2024).
-
Altamura, S. et al. Levilactobacillus brevis CD2 as a multifaceted probiotic to preserve oral health: Tesults of a double-blind, randomized, placebo-controlled trial in healthy adults. J. Transl. Med. 23, 128 (2025).
-
Zhang, Y. et al. Geobacillus and bacillus spore inactivation by low energy electron beam technology: Resistance and influencing factors. Front. Microbiol. 9, 2720 (2018).
-
Kim, S. H. et al. Strain-specific metabolomic diversity of Lactiplantibacillus plantarum under aerobic and anaerobic conditions. Food Microbiol. 116, 104364 (2023).
-
Grigore-Gurgu, L. et al. Lactiplantibacillus plantarum and Lactiplantibacillus paraplantarum postbiotics: Assessment of the biotic-derived metabolites with cytocompatibility and antitumoral potential. Food Biosci. 59, 103863 (2024).
-
Tabacof, A., Calado, V. & Pereira, N. Third Generation Lactic Acid Production by Lactobacillus pentosus from the Macroalgae Kappaphycus alvarezii Hydrolysates. Fermentation 9, 319 (2023).
-
Abriouel, H., Manetsberger, J., Caballero Gómez, N. & Benomar, N. In silico genomic analysis of the potential probiotic Lactiplantibacillus pentosus CF2-10N reveals promising beneficial effects with health promoting properties. Front Microbiol 13, 989824 (2022).
-
Nishida, S., Suzuki, J., Inoue, M., Kamikawa, R. & Yoshida, T. Draft genome of Parageobacillus thermoglucosidasius, a member of hydrogenogenic carbon monoxide utilizers, isolated from a freshwater lake sediment. Microbiol. Resour. Announc. 13, e00795–23 (2024).
-
Urbaniak, C. et al. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10, 100 (2022).
-
Rywinska, A. et al. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48, 148–166 (2013).
