Cultured chicken meat developed by structuring cellular spheroids on an edible bacterial nanocellulose bioscaffold

cultured-chicken-meat-developed-by-structuring-cellular-spheroids-on-an-edible-bacterial-nanocellulose-bioscaffold
Cultured chicken meat developed by structuring cellular spheroids on an edible bacterial nanocellulose bioscaffold

References

  1. Balasubramanian, B., Liu, W., Pushparaj, K. & Park, S. The epic of in vitro meat production—a fiction into reality. Foods 10, 1395 (2021).

  2. Alexandratos, N. & Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. WORLD AGRICULTURE https://www.fao.org/3/ap106e/ap106e.pdf (FAO, 2012).

  3. Bhat, Z. F., Kumar, S. & Bhat, H. F. In vitro meat: a future animal-free harvest. Crit. Rev. Food Sci. Nutr. 57, 782–789 (2017).

    Google Scholar 

  4. Hong, T. K., Shin, D.-M., Choi, J., Do, J. T. & Han, S. G. Current issues and technical advances in cultured meat production: A review. Food Sci. Anim. Resour. 41, 335–372 (2021).

    Google Scholar 

  5. Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta Gen. Subj. 1840, 2506–2519 (2014).

    Google Scholar 

  6. Zhang, S. et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41, 15–25 (2015).

    Google Scholar 

  7. Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci USA 110, 39–48 (2013).

  8. Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell-ECM interactions to tissue engineering. J. Cell Physiol. 199, 174–180 (2004).

    Google Scholar 

  9. Petrenko, Y., Syková, E. & Kubinová, Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res. Ther. 8, 94 (2017).

    Google Scholar 

  10. Zhang, H. et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30–35 (2013).

    Google Scholar 

  11. Cheng, N.-C., Chen, S.-Y., Li, J.-R. & Young, T.-H. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl. Med. 2, 584–594 (2013).

    Google Scholar 

  12. Ng, S. & Kurisawa, M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater. 124, 108–129 (2021).

    Google Scholar 

  13. Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3, 46 (2019).

  14. Park, Y., Huh, K. M. & Kang, S. W. Applications of biomaterials in 3d cell culture and contributions of 3d cell culture to drug development and basic biomedical research. Int J. Mol. Sci. 22, 1–21 (2021).

    Google Scholar 

  15. Lin, K. W. & Lin, H. Y. Quality characteristics of chinese-style meatball containing bacterial cellulose (Nata). J. Food Sci. 69, 107–111 (2004).

  16. Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).

    Google Scholar 

  17. Bäckdahl, H. et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006).

    Google Scholar 

  18. Bomkamp, C. et al. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv. Sci. 9, e2102908 (2022).

  19. Tang, Y. et al. Cellulose as a sustainable scaffold material in cultivated meat production. Curr. Res Food Sci. 9, 100846 (2024).

    Google Scholar 

  20. Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M. & Claro, A. M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front. Sustain. Food Syst. 3, (2019).

  21. de Oliveira, K. P. V. et al. Transparent 3-layered bacterial nanocellulose as a multicompartment and biomimetic scaffold for co-culturing cells. J. Funct. Biomater. 16, 208 (2025).

    Google Scholar 

  22. Sharma, C. & Bhardwaj, N. K. Bacterial nanocellulose: present status, biomedical applications and future perspectives. Mater. Sci. Eng. C 104, 109963 (2019).

  23. Athukoralalage, S. S., Balu, R., Dutta, N. K. & Choudhury, N. R. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review. Polymers. 11, 898 (2019).

  24. Recouvreux, D. O. S. et al. Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater. Sci. Eng. C. 31, 151–157 (2011).

    Google Scholar 

  25. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy. Cytotherapy 8, 315–317 (2006).

    Google Scholar 

  26. Krontiras, P., Gatenholm, P. & Hagg, D. A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J. Biomed. Mater. Res B Appl Biomater. 103, 195–203 (2015).

    Google Scholar 

  27. Eltom, A., Zhong, G. & Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv. Mater. Sci. Eng. 2019, 3429527 (2019).

  28. Prabsangob, N. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value-a review. NFS J. 31, 39–49 (2023).

    Google Scholar 

  29. Lee, H. J., Yong, H. I., Kim, M., Choi, Y.-S. & Jo, C. Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australas. J. Anim. Sci. 33, 1533–1543 (2020).

    Google Scholar 

  30. Svensson, A. et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005).

    Google Scholar 

  31. de Peixoto, M. A., dos Reis, E. M., Cesca, K. & Porto, L. M. Study of melanoma cell behavior in vitro in collagen functionalized bacterial nanocellulose hydrogels. Cellul. Chem. Technol. Cellul. Chem. Technol. 54, 669–677 (2020).

    Google Scholar 

  32. Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C. & Wells, A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow–derived mesenchymal stem cells. Stem Cells 24, 686–695 (2006).

    Google Scholar 

  33. Tamama, K. & Barbeau, D. J. Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem Cells Int. 2012, 428403 (2012).

  34. Mueller-Klieser, W. invited review Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol.-Cell Physiol. 273, C1109–C1123 (1997).

    Google Scholar 

  35. Sart, S., Tsai, A. C., Li, Y. & Ma, T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 20, 365–380 (2014).

    Google Scholar 

  36. Vallier, L. & Pedersen, R. A. Human embryonic stem cells an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev. 1, 119–130 (2005).

    Google Scholar 

  37. Lin, R.-Z. & Chang, H.-Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008).

    Google Scholar 

  38. Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).

    Google Scholar 

  39. Rico, P., Mnatsakanyan, H., Dalby, M. J. & Salmerón-Sánchez, M. Material-driven fibronectin assembly promotes maintenance of mesenchymal stem cell phenotypes. Adv. Funct. Mater. 26, 6563–6573 (2016).

    Google Scholar 

  40. Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).

    Google Scholar 

  41. Okumura, K. et al. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 38, 104–113 (2003).

    Google Scholar 

  42. Madrigal, M., Rao, K. S. & Riordan, N. H. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 12, 260 (2014).

  43. Daneshmandi, L. et al. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 38, 1373–1384 (2020).

    Google Scholar 

  44. Tsai, A. C., Liu, Y., Yuan, X. & Ma, T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng. Part A 21, 1705–1719 (2015).

    Google Scholar 

  45. Bellas, E. & Chen, C. S. Forms, forces, and stem cell fate. Curr. Opin. Cell Biol. 31, 92–97 (2014).

    Google Scholar 

  46. Mcbeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Google Scholar 

  47. Choi, J. W. et al. Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS One 5, 12968 (2010).

  48. Giotis, E. S., Montillet, G., Pain, B. & Skinner, M. A. Chicken embryonic-stem cells are permissive to poxvirus recombinant vaccine vectors. Genes. 10, 237 (2019).

    Google Scholar 

  49. Han, J. Y. et al. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J Anim Sci Biotechnol 9, 31 (2018).

  50. Metzger, W. et al. The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13, 1000–1012 (2011).

    Google Scholar 

  51. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastP. iMeta. 2, 107 (2023).

  52. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Google Scholar 

  53. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    Google Scholar 

  54. Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).

    Google Scholar 

  55. Richter, M., Rosselló-Móra, R., Oliver Glöckner, F. & Peplies, J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32, 929–931 (2016).

    Google Scholar 

  56. Niu, H. et al. Chicken bone marrow mesenchymal stem cells improve lung and distal organ injury. Sci. Rep. 11, 17937 (2021).

  57. Haach, V. et al. Establishment of chicken muscle and adipogenic cell cultures for cultivated meat production. Front. Nutr. 12, 1648935 (2025).

  58. Ejiri, H. et al. Use of synthetic serum-free medium for culture of human dermal fibroblasts to establish an experimental system similar to living dermis. Cytotechnology 67, 507–514 (2015).

    Google Scholar 

  59. Boccard, R. et al. Procedures for measuring meat quality characteristics in beef production experiments. Report of a working group in the Commission of the European Communities’ (CEC). Beef Production Research Programme. Livest. Prod. Sci. 8, 385–397 (1981). Livest. Prod. Sci. 8, 385–397 (1981).

    Google Scholar 

  60. Bridi, A. M. & Da Silva, C. A. Avaliação da Carne Suína. (EMBRAPA, 2009).

  61. AOAC Official Method 992.15 Crude Protein in Meat and Meat Products: Including Pet Foods Combustion Method. In Official Methods of Analysis of AOAC INTERNATIONAL (ed. Latimer, G. W.) (AOAC Publications, 2006).

  62. Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos [Physicochemical methods for food analysis] (eds. Zenebon, O.; Pascuet, N. S.; Tiglea, P.) (Instituto Adolfo Lutz, 2008).

Download references