References
-
Balasubramanian, B., Liu, W., Pushparaj, K. & Park, S. The epic of in vitro meat production—a fiction into reality. Foods 10, 1395 (2021).
-
Alexandratos, N. & Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. WORLD AGRICULTURE https://www.fao.org/3/ap106e/ap106e.pdf (FAO, 2012).
-
Bhat, Z. F., Kumar, S. & Bhat, H. F. In vitro meat: a future animal-free harvest. Crit. Rev. Food Sci. Nutr. 57, 782–789 (2017).
-
Hong, T. K., Shin, D.-M., Choi, J., Do, J. T. & Han, S. G. Current issues and technical advances in cultured meat production: A review. Food Sci. Anim. Resour. 41, 335–372 (2021).
-
Gattazzo, F., Urciuolo, A. & Bonaldo, P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta Gen. Subj. 1840, 2506–2519 (2014).
-
Zhang, S. et al. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 41, 15–25 (2015).
-
Lei, Y. & Schaffer, D. V. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci USA 110, 39–48 (2013).
-
Rosso, F., Giordano, A., Barbarisi, M. & Barbarisi, A. From cell-ECM interactions to tissue engineering. J. Cell Physiol. 199, 174–180 (2004).
-
Petrenko, Y., Syková, E. & Kubinová, Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res. Ther. 8, 94 (2017).
-
Zhang, H. et al. Intrachromosomal looping is required for activation of endogenous pluripotency genes during reprogramming. Cell Stem Cell 13, 30–35 (2013).
-
Cheng, N.-C., Chen, S.-Y., Li, J.-R. & Young, T.-H. Short-term spheroid formation enhances the regenerative capacity of adipose-derived stem cells by promoting stemness, angiogenesis, and chemotaxis. Stem Cells Transl. Med. 2, 584–594 (2013).
-
Ng, S. & Kurisawa, M. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomater. 124, 108–129 (2021).
-
Ben-Arye, T. & Levenberg, S. Tissue engineering for clean meat production. Front. Sustain. Food Syst. 3, 46 (2019).
-
Park, Y., Huh, K. M. & Kang, S. W. Applications of biomaterials in 3d cell culture and contributions of 3d cell culture to drug development and basic biomedical research. Int J. Mol. Sci. 22, 1–21 (2021).
-
Lin, K. W. & Lin, H. Y. Quality characteristics of chinese-style meatball containing bacterial cellulose (Nata). J. Food Sci. 69, 107–111 (2004).
-
Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in food. Food Hydrocoll. 35, 539–545 (2014).
-
Bäckdahl, H. et al. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141–2149 (2006).
-
Bomkamp, C. et al. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv. Sci. 9, e2102908 (2022).
-
Tang, Y. et al. Cellulose as a sustainable scaffold material in cultivated meat production. Curr. Res Food Sci. 9, 100846 (2024).
-
Azeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M. & Claro, A. M. Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. Front. Sustain. Food Syst. 3, (2019).
-
de Oliveira, K. P. V. et al. Transparent 3-layered bacterial nanocellulose as a multicompartment and biomimetic scaffold for co-culturing cells. J. Funct. Biomater. 16, 208 (2025).
-
Sharma, C. & Bhardwaj, N. K. Bacterial nanocellulose: present status, biomedical applications and future perspectives. Mater. Sci. Eng. C 104, 109963 (2019).
-
Athukoralalage, S. S., Balu, R., Dutta, N. K. & Choudhury, N. R. 3D bioprinted nanocellulose-based hydrogels for tissue engineering applications: a brief review. Polymers. 11, 898 (2019).
-
Recouvreux, D. O. S. et al. Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater. Sci. Eng. C. 31, 151–157 (2011).
-
Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy. Cytotherapy 8, 315–317 (2006).
-
Krontiras, P., Gatenholm, P. & Hagg, D. A. Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds. J. Biomed. Mater. Res B Appl Biomater. 103, 195–203 (2015).
-
Eltom, A., Zhong, G. & Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv. Mater. Sci. Eng. 2019, 3429527 (2019).
-
Prabsangob, N. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value-a review. NFS J. 31, 39–49 (2023).
-
Lee, H. J., Yong, H. I., Kim, M., Choi, Y.-S. & Jo, C. Status of meat alternatives and their potential role in the future meat market — A review. Asian-Australas. J. Anim. Sci. 33, 1533–1543 (2020).
-
Svensson, A. et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26, 419–431 (2005).
-
de Peixoto, M. A., dos Reis, E. M., Cesca, K. & Porto, L. M. Study of melanoma cell behavior in vitro in collagen functionalized bacterial nanocellulose hydrogels. Cellul. Chem. Technol. Cellul. Chem. Technol. 54, 669–677 (2020).
-
Tamama, K., Fan, V. H., Griffith, L. G., Blair, H. C. & Wells, A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow–derived mesenchymal stem cells. Stem Cells 24, 686–695 (2006).
-
Tamama, K. & Barbeau, D. J. Early growth response genes signaling supports strong paracrine capability of mesenchymal stem cells. Stem Cells Int. 2012, 428403 (2012).
-
Mueller-Klieser, W. invited review Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol.-Cell Physiol. 273, C1109–C1123 (1997).
-
Sart, S., Tsai, A. C., Li, Y. & Ma, T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng. Part B Rev. 20, 365–380 (2014).
-
Vallier, L. & Pedersen, R. A. Human embryonic stem cells an in vitro model to study mechanisms controlling pluripotency in early mammalian development. Stem Cell Rev. 1, 119–130 (2005).
-
Lin, R.-Z. & Chang, H.-Y. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172–1184 (2008).
-
Morikawa, S. et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206, 2483–2496 (2009).
-
Rico, P., Mnatsakanyan, H., Dalby, M. J. & Salmerón-Sánchez, M. Material-driven fibronectin assembly promotes maintenance of mesenchymal stem cell phenotypes. Adv. Funct. Mater. 26, 6563–6573 (2016).
-
Duval, K. et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology 32, 266–277 (2017).
-
Okumura, K. et al. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 38, 104–113 (2003).
-
Madrigal, M., Rao, K. S. & Riordan, N. H. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J. Transl. Med. 12, 260 (2014).
-
Daneshmandi, L. et al. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 38, 1373–1384 (2020).
-
Tsai, A. C., Liu, Y., Yuan, X. & Ma, T. Compaction, fusion, and functional activation of three-dimensional human mesenchymal stem cell aggregate. Tissue Eng. Part A 21, 1705–1719 (2015).
-
Bellas, E. & Chen, C. S. Forms, forces, and stem cell fate. Curr. Opin. Cell Biol. 31, 92–97 (2014).
-
Mcbeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).
-
Choi, J. W. et al. Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS One 5, 12968 (2010).
-
Giotis, E. S., Montillet, G., Pain, B. & Skinner, M. A. Chicken embryonic-stem cells are permissive to poxvirus recombinant vaccine vectors. Genes. 10, 237 (2019).
-
Han, J. Y. et al. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J Anim Sci Biotechnol 9, 31 (2018).
-
Metzger, W. et al. The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13, 1000–1012 (2011).
-
Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastP. iMeta. 2, 107 (2023).
-
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
-
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
-
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
-
Richter, M., Rosselló-Móra, R., Oliver Glöckner, F. & Peplies, J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32, 929–931 (2016).
-
Niu, H. et al. Chicken bone marrow mesenchymal stem cells improve lung and distal organ injury. Sci. Rep. 11, 17937 (2021).
-
Haach, V. et al. Establishment of chicken muscle and adipogenic cell cultures for cultivated meat production. Front. Nutr. 12, 1648935 (2025).
-
Ejiri, H. et al. Use of synthetic serum-free medium for culture of human dermal fibroblasts to establish an experimental system similar to living dermis. Cytotechnology 67, 507–514 (2015).
-
Boccard, R. et al. Procedures for measuring meat quality characteristics in beef production experiments. Report of a working group in the Commission of the European Communities’ (CEC). Beef Production Research Programme. Livest. Prod. Sci. 8, 385–397 (1981). Livest. Prod. Sci. 8, 385–397 (1981).
-
Bridi, A. M. & Da Silva, C. A. Avaliação da Carne Suína. (EMBRAPA, 2009).
-
AOAC Official Method 992.15 Crude Protein in Meat and Meat Products: Including Pet Foods Combustion Method. In Official Methods of Analysis of AOAC INTERNATIONAL (ed. Latimer, G. W.) (AOAC Publications, 2006).
-
Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos [Physicochemical methods for food analysis] (eds. Zenebon, O.; Pascuet, N. S.; Tiglea, P.) (Instituto Adolfo Lutz, 2008).
