A bio-adaptive physical hydrogel enables dynamic tissue engineering for tracheal reconstruction

a-bio-adaptive-physical-hydrogel-enables-dynamic-tissue-engineering-for-tracheal-reconstruction
A bio-adaptive physical hydrogel enables dynamic tissue engineering for tracheal reconstruction

Data availability

All data supporting the findings of this study are available within the article and its supplementary files. Any additional requests for information can be directed to, and will be fulfilled by, the corresponding authors. The raw RNA sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) under accession number GSE309417. Source data are provided with this paper.

References

  1. Etienne, H. et al. Tracheal replacement. Eur. Respir. J. 51, 1702211 (2018).

    Google Scholar 

  2. Wright, C. D. et al. Postintubation tracheal stenosis: management and results 1993 to 2017. Ann. Thorac. Surg. 108, 1471–1477 (2019).

    Google Scholar 

  3. Guibert, N. et al. Treatment of post-transplant complex airway stenosis with a three-dimensional, computer-assisted customized airway stent. Am. J. Respir. Crit. Care Med. 195, e31–e33 (2017).

    Google Scholar 

  4. Ali, S. R. & Mehta, A. C. Alive in the airways: live endobronchial foreign bodies. Chest 151, 481–491 (2017).

    Google Scholar 

  5. Oliveira, J. F. D. et al. In Tracheostomy 11–22 (Springer, 2018).

  6. Hollenhorst, M. I. et al. Bitter taste signaling in tracheal epithelial brush cells elicits innate immune responses to bacterial infection. J. Clin. Invest. 132, e150951 (2022).

  7. Tang, H. et al. A bioengineered trachea-like structure improves survival in a rabbit tracheal defect model. Sci. Transl. Med. 15, eabo4272 (2023).

    Google Scholar 

  8. Xu, Y. et al. Biomimetic trachea engineering via a modular ring strategy based on bone-marrow stem cells and atelocollagen for use in extensive tracheal reconstruction. Adv. Mater. 34, 2106755 (2022).

    Google Scholar 

  9. Yang, S. et al. Morphogens enable interacting supracellular phases that generate organ architecture. Science 382, eadg5579 (2023).

    Google Scholar 

  10. Duda, G. N. et al. The decisive early phase of bone regeneration. Nat. Rev. Rheumatol. 19, 78–95 (2023).

    Google Scholar 

  11. Laufer, E., Nelson, C. E., Johnson, R. L., Morgan, B. A. & Tabin, C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Google Scholar 

  12. Liu, Z., Wan, X., Wang, Z. L. & Li, L. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications. Adv. Mater. 33, e2007429 (2021).

    Google Scholar 

  13. Huang, G. et al. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117, 12764–12850 (2017).

    Google Scholar 

  14. Moroni, L. et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018).

    Google Scholar 

  15. Tang, H., Sun, W., Chen, Y., She, Y. & Chen, C. Future directions for research on tissue-engineered trachea. Bio-Des. Manuf. 5, 627–632 (2022).

  16. Yu, L. & Ding, J. Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37, 1473–1481 (2008).

    Google Scholar 

  17. Shi, J., Yu, L. & Ding, J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 128, 42–59 (2021).

    Google Scholar 

  18. Chen, X. et al. An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials 298, 122139 (2023).

  19. Patel, M., Lee, H. J., Park, S., Kim, Y. & Jeong, B. Injectable thermogel for 3D culture of stem cells. Biomaterials 159, 91–107 (2018).

    Google Scholar 

  20. Yu, J. et al. Single-dose physically cross-linked hyaluronic acid and lipid hybrid nanoparticles containing cyclic guanosine monophosphate-adenosine monophosphate eliminate established tumors. ACS Nano 18, 29942–29955 (2024).

    Google Scholar 

  21. Sarmah, D. & Karak, N. Physically cross-linked starch/hydrophobically-associated poly(acrylamide) self-healing mechanically strong hydrogel. Carbohydr. Polym. 289, 119428 (2022).

    Google Scholar 

  22. Tong, X. & Yang, F. Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257 (2016).

    Google Scholar 

  23. Ruscitto, A. et al. Lgr5-expressing secretory cells form a Wnt inhibitory niche in cartilage critical for chondrocyte identity. Cell Stem Cell 30, 1179–1198.e1177 (2023).

    Google Scholar 

  24. Dai, M. et al. A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners. Biomaterials 240, 119841 (2020).

    Google Scholar 

  25. Hou, M. et al. Dominant role of in situ native cartilage niche for determining the cartilage type regenerated by BMSCs. Bioact. Mater. 13, 149–160 (2022).

    Google Scholar 

  26. Xiang, L. et al. Motion lubrication suppressed mechanical activation via hydrated fibrous gene patch for tendon healing. Sci. Adv. 9, eadc9375 (2023).

    Google Scholar 

  27. Yu, L. et al. Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater. Sci. 2, 1100–1109 (2014).

    Google Scholar 

  28. Deng, J. et al. Versatile hypoxic extracellular vesicles laden in an injectable and bioactive hydrogel for accelerated bone regeneration. Adv. Funct. Mater. 33, 2211664 (2023).

  29. Zhang, H. et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci. Adv. 9, eabo7868 (2023).

    Google Scholar 

  30. Zhang, Y. et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat. Commun. 13, 2447 (2022).

    Google Scholar 

  31. Castilho, M., Mouser, V., Chen, M., Malda, J. & Ito, K. Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration. Acta Biomater. 95, 297–306 (2019).

    Google Scholar 

  32. de Roy, L. et al. Structure-function of cartilage in osteoarthritis: an ex-vivo correlation analysis between its structural, viscoelastic and frictional properties. Acta Biomater. 190, 293–302 (2024).

    Google Scholar 

  33. Nilssen, Y. et al. Tracheal cancer: a rare and deadly but potentially curable disease that also affects younger people. Eur. J. Cardiothorac. Surg. 64, ezad244 (2023).

  34. Boogaard, R. et al. Tracheomalacia and bronchomalacia in children: incidence and patient characteristics. Chest 128, 3391–3397 (2005).

    Google Scholar 

  35. Furlow, P. W. & Mathisen, D. J. Surgical anatomy of the trachea. Ann. Cardiothorac. Surg. 7, 255 (2018).

    Google Scholar 

  36. Samat, A. A., Hamid, Z. A. A., Yahaya, B. H. & Mariatti Jaafar, M. In Advances in Experimental Medicine and Biology (2022).

  37. Xia, D. et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model. J. Tissue Eng. Regen. Med. 13, 694–703 (2019).

    Google Scholar 

  38. Xu, Y. et al. Photocrosslinked natural hydrogel composed of hyaluronic acid and gelatin enhances cartilage regeneration of decellularized trachea matrix. Mater. Sci. Eng. C 120, 111628 (2021).

  39. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Google Scholar 

  40. Li, D. et al. Stable subcutaneous cartilage regeneration of bone marrow stromal cells directed by chondrocyte sheet. Acta Biomater. 54, 321–332 (2017).

    Google Scholar 

  41. Daly, A. C. & Kelly, D. J. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197, 194–206 (2019).

    Google Scholar 

  42. Decker, R. S., Koyama, E. & Pacifici, M. Articular cartilage: structural and developmental intricacies and questions. Curr. Osteoporos. Rep. 13, 407–414 (2015).

    Google Scholar 

  43. Bhattacharjee, M. et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv. Drug Deliv. Rev. 84, 107–122 (2015).

    Google Scholar 

  44. Yang, B. et al. Recapitulating hypoxic metabolism in cartilaginous organoids via adaptive cell-matrix interactions enhances histone lactylation and cartilage regeneration. Nat. Commun. 16, 2711 (2025).

    Google Scholar 

  45. Yang, W. & Lefebvre, V. PTPN11 in cartilage development, adult homeostasis, and diseases. Bone Res. 13, 53 (2025).

    Google Scholar 

  46. Woods, J. P., Rackley, A., Kwon, H. R. & Olson, L. E. PDGFRα signaling regulates cartilage and fibrous tissue differentiation during synovial joint development. Nat. Commun. 16, 4041 (2025).

    Google Scholar 

  47. Minamoto, K. & Pinsky, D. J. Recipient iNOS but not eNOS deficiency reduces luminal narrowing in tracheal allografts. J. Exp. Med. 196, 1321–1333 (2002).

    Google Scholar 

  48. Liu, S. et al. A tissue injury sensing and repair pathway distinct from host pathogen defense. Cell 186, 2127–2143.e2122 (2023).

    Google Scholar 

  49. Griffin, D. R. et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021).

    Google Scholar 

  50. Yu, L., Chang, G., Zhang, H. & Ding, J. Temperature-induced spontaneous sol–gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J. Polym. Sci. Part A: Polym. Chem. 45, 1122–1133 (2007).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Noncommunicable Chronic Diseases-National Science and Technology Major Project (no. 2024ZD0529000 (C.C.), 2024ZD0540700 (H.T.), and 2023ZD0516200 (W.S.)), the National Key Research and Development Program of the Ministry of Science and Technology no. 2022YFC2407401 (C.C.) and no. 2024YFC3044600 (C.C.), the National Natural Science Foundation of China (NSFC) no. 81770091 (C.C.), the Science and Technology Commission of Shanghai Municipality no. 24YF2735500 (H.T.), the Shanghai Municipal Health Commission no. 2023ZZ02025 (C.C.), the Shanghai Pulmonary Hospital no. FKJY2405 (H.T.), and no. FKCY2406 (H.T.), the Clinical Research Foundation of Shanghai Pulmonary Hospital no. FKLY20007 (C.C.) and no. SKPY2021005 (L.Z.), the Ningbo Top Medical and Health Research Program no. 2022030208 (G.Z.).

Author information

Author notes

  1. These authors contributed equally: Hai Tang, Hanchen Wang, Weiyan Sun, Yi Chen.

Authors and Affiliations

  1. Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

    Hai Tang, Weiyan Sun, Yi Chen, Ziyin Pan, Qingfeng Bai, Weikang Lin, Yulong Hu, Lei Wang, Lei Zhang, Yunlang She, Xuefei Hu & Chang Chen

  2. Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China

    Hai Tang, Weiyan Sun, Yi Chen, Ziyin Pan, Qingfeng Bai, Weikang Lin, Yulong Hu, Lei Wang, Lei Zhang, Yunlang She, Xuefei Hu & Chang Chen

  3. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China

    Hanchen Wang, Yaoben Wang, Jiandong Ding & Lin Yu

  4. Department of Cardiothoracic Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, China

    Minglei Yang & Guofang Zhao

  5. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA

    Kewen Lei

Authors

  1. Hai Tang
  2. Hanchen Wang
  3. Weiyan Sun
  4. Yi Chen
  5. Ziyin Pan
  6. Qingfeng Bai
  7. Yaoben Wang
  8. Weikang Lin
  9. Yulong Hu
  10. Lei Wang
  11. Minglei Yang
  12. Guofang Zhao
  13. Lei Zhang
  14. Yunlang She
  15. Xuefei Hu
  16. Kewen Lei
  17. Jiandong Ding
  18. Lin Yu
  19. Chang Chen

Contributions

H.T., H.W., and W.S. designed the study and conducted data curation and analysis. H.T. oversaw all experiments and contributed to cell experiments, animal surgery, sample collection, histological analysis, mechanical and biochemical testing. H.W. and W.S. contributed to cell experiments, animal surgery and sample collection. Y.C. contributed to RNA sequencing, data curation and analysis. H.W. and Y.W. contributed to experimental material fabrication, characterization, data collation and analysis. Z.P., Q.B., W.L., and L.W. contributed to cell experiments, animal studies and data analysis. Z.P., Q.B., Y.H., M.Y., G.Z., and L.Z. contributed to animal surgery, data collation and validation. Y.S. and X.H. contributed to data validation and writing and review of the manuscript. J.D. and K.L. contributed to the manuscript’s writing and review. C.C. and L.Y. supervised the study and contributed to the manuscript’s design, writing and review.

Corresponding authors

Correspondence to Weiyan Sun, Lin Yu or Chang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Tendy Chiang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Wang, H., Sun, W. et al. A bio-adaptive physical hydrogel enables dynamic tissue engineering for tracheal reconstruction. Nat Commun (2025). https://doi.org/10.1038/s41467-025-67580-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-67580-0