References
-
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).
-
Guo, J. et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 7, 391 (2022).
-
Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).
-
Leeman, D. S. et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359, 1277–1283 (2018).
-
Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).
-
Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).
-
He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).
-
Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).
-
Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).
-
Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2015).
-
Fuhrmann-Stroissnigg, H. et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422 (2017).
-
Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab. 1, 1074–1088 (2019).
-
Xu, Q. et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 3, 1706–1726 (2021).
-
Rad, A. N. & Grillari, J. Current senolytics: mode of action, efficacy and limitations, and their future. Mech. Ageing Dev. 217, 111888 (2024).
-
Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
-
von Krusenstiern, A. N. et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat. Chem. Biol. 19, 719–730 (2023).
-
Lei L. et al. Targeting the Labile iron pool with engineered DFO nanosheets to inhibit ferroptosis for Parkinson’s disease therapy. Adv. Mater. 36, e2409329 (2024).
-
Zhu L. et al. Ferritin-hijacking nanoparticles spatiotemporally directing endogenous ferroptosis for synergistic anticancer therapy. Adv. Mater. 34, e2207174 (2022).
-
Zou, P. et al. Implanted, wireless, self-powered photodynamic therapeutic tablet synergizes with ferroptosis inducer for effective cancer treatment. Adv. Sci. 10, e2302731 (2023).
-
Wang, Q. et al. Enzyme-mediated bioorthogonal cascade catalytic reaction for metabolism intervention and enhanced ferroptosis on neuroblastoma. J. Am. Chem. Soc. 146, 8228–8241 (2024).
-
Du, K. et al. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. Nat. Aging 4, 949–968 (2024).
-
Noh B. et al. Iron overload induces cerebral endothelial senescence in aged mice and in primary culture in a sex-dependent manner. Aging Cell 22, e13977 (2023).
-
Maus, M. et al. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype. Nat. Metab. 5, 2111–2130 (2023).
-
Admasu T. D. et al. Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis. Cell Rep. 42, 112058 (2023).
-
Nousis, L., Kanavaros, P. & Barbouti, A. Oxidative stress-induced cellular senescence: is labile iron the connecting link?. Antioxidants 12, 1250 (2023).
-
Lan M. et al. Photosensitizers for photodynamic therapy. Adv. Healthcare Mater. 8, e1900132 (2019).
-
Shi, D. et al. Photoactivatable senolysis with single-cell resolution delays aging. Nat. Aging 3, 297–312 (2023).
-
Vankayala, R. & Hwang, K. C. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv. Mater. 30, e1706320 (2018).
-
Wan, Y., Fu, L. H., Li, C., Lin, J. & Huang, P. Conquering the hypoxia limitation for photodynamic therapy. Adv. Mater. 33, e2103978 (2021).
-
Deng, X., Shao, Z. & Zhao, Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv. Sci. 8, 2002504 (2021).
-
Zhao, H. et al. An energy-storing DNA-based nanocomplex for laser-free photodynamic therapy. Adv. Mater. 34, e2109920 (2022).
-
Zhao, H. et al. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy. Biomaterials 309, 122620 (2024).
-
Gnaim, S. et al. Direct real-time monitoring of prodrug activation by chemiluminescence. Angew. Chem. Int. Ed. 57, 9033–9037 (2018).
-
Jiang, G. et al. A selective and light-up fluorescent probe for β-galactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. Chem. Commun. 53, 4505–4508 (2017).
-
Safir Filho, M., Dao, P., Gesson, M., Martin, A. R. & Benhida, R. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity – application to the real-time monitoring of senescence in live cells. Analyst 143, 2680–2688 (2018).
-
Coffman, L. G., Parsonage, D., D’Agostino, R., Torti, F. M. & Torti, S. V. Regulatory effects of ferritin on angiogenesis. Proc. Natl. Acad. Sci. 106, 570–575 (2009).
-
Lazar, A.-N., Perret, F., Perez-Lloret, M., Michaud, M. & Coleman, A. W. Promises of anionic calix[n]arenes in life science: State of the art in 2023. Eur. J. Med. Chem. 264, 115994 (2024).
-
Ramberg, K. O., Engilberge, S., Skorek, T. & Crowley, P. B. Facile fabrication of protein–macrocycle frameworks. J. Am. Chem. Soc. 143, 1896–1907 (2021).
-
Mester, L., Govyadinov, A. A., Chen, S., Goikoetxea, M. & Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020).
-
Gnaim, S. et al. Light emission enhancement by supramolecular complexation of chemiluminescence probes designed for bioimaging. Chem. Sci. 10, 2945–2955 (2019).
-
Yeung, J. Y. et al. Solvent-dependent supramolecular host-guest assemblies of platinum(II) tweezers and a guest system: from discrete molecules to high-ordered oligomers. Angew. Chem. (Int. ed. Engl.) 61, e202207313 (2022).
-
Goudarzi, Z. et al. Two-dimensional polycyclodextrins for strong multivalent host-guest interactions at biointerfaces. Small 21, e2412282 (2025).
-
Swain, S. et al. Photoactive nanocatalysts as DTT-assisted BSA-AuNCs with enhanced oxidase-mimicking ability for sensitive fluorometric detection of antioxidants. J. Nanobiotechnol. 22, 585 (2024).
-
McKenna, E., Traganos, F., Zhao, H. & Darzynkiewicz, Z. Persistent DNA damage caused by low levels of mitomycin C induces irreversible cell senescence. Cell Cycle 11, 3132–3140 (2014).
-
Liu, W. et al. Chlorin e6-biotin conjugates for tumor-targeting photodynamic therapy. Molecules 26, 7342 (2021).
-
Cai, Y. et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 30, 574–589 (2020).
-
Zhang H. et al. Senolytic therapy enabled by senescent cell-sensitive biomimetic melanin nano-senolytics. Adv. Healthc. Mater. 13, e2401085 (2024).
-
Raffaele, M. & Vinciguerra, M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 3, e67–e77 (2022).
-
Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).
-
Dhokia, V., Albati, A., Smith, H., Thomas, G. & Macip, S. A second generation of senotherapies: the development of targeted senolytics, senoblockers and senoreversers for healthy ageing. Biochem. Soc. Trans. 52, 1661–1671 (2024).
-
Chandrakar, L., Ambatwar, R. & Khatik, G. L. Cellular senescence and senolytic agents: recent updates on their role and applications. Curr. Top. Med. Chem. 24, 157–178 (2024).
-
Sun, B., Bte Rahmat, J. N. & Zhang, Y. Advanced techniques for performing photodynamic therapy in deep-seated tissues. Biomaterials 291, 121875 (2022).
-
Pezacki, A. T. et al. A tandem activity-based sensing and labeling strategy reveals antioxidant response element regulation of labile iron pools. Proc. Natl. Acad. Sci. 121, e2401579121 (2024).
-
Zhang S. et al., Self-Illuminating NIR-II chemiluminescence nanosensor for in vivo tracking H2O2 fluctuation. Adv. Sci. 10, 2207651 (2023).
-
Yang, S. et al. GSH/pH dual activatable cross-linked and fluorinated PEI for cancer gene therapy through endogenous iron de-hijacking and in situ ROS amplification. Adv. Mater. 36, e2304098 (2023).
-
Nambiar, A. et al. Senolytics dasatinib and quercetin in idiopathic pulmonary fibrosis: results of a phase I, single-blind, single-center, randomized, placebo-controlled pilot trial on feasibility and tolerability. eBioMedicine 90, 104481 (2023).
-
Guignabert, C. et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J. Clin. Investig. 126, 3207–3218 (2016).
-
Delval, L. et al. Removal of senescent cells reduces the viral load and attenuates pulmonary and systemic inflammation in SARS-CoV-2-infected, aged hamsters. Nat. Aging 3, 829–845 (2023).
-
Novais E. J. et al. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213 (2021).
-
Budamagunta, V. et al. Senolytic treatment alleviates doxorubicin-induced chemobrain. Aging Cell 23, e14037 (2024).
